• Title/Summary/Keyword: 고층

Search Result 1,322, Processing Time 0.032 seconds

A Study on the Materials Characteristics of SM570TMC Plates (SM570TMC 강재의 재료특성에 관한 연구)

  • Im, Sung Woo;Kim, Yo Suk;Chang, In Hwa
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.3 s.76
    • /
    • pp.365-373
    • /
    • 2005
  • There is increasing need for high-strength steel especially for the high-rise steel building structure. High- strength steels, however, may have mechanical properties that are significantly different from those of the conventional steels.The application of high-strength steels to building structures should be reviewed as to whether inelastic behavior equivalent to that of conventional steels can be attained or not. In this study, SM570TMC steel, which was developed recently in Korea, was tested to evaluate mechanical properties and welding characteristics for use as a structural steel. Yield phenomenon of SM570TMC steel, which is continuous yielding, is quite different from that of conventional steel. The distributions of yield strength of SM570TMC steel were uniform regardless of thickness, while the minimum yield strength was 440MPa. Also, the flat distributions of hardness in z-direction were found to comprise one of the important properties. Results of the charpy impact tests at -5oC revealed toughness values of SM570TMC steel, which were higher than those of equivalent as rolled steel. Carbon equivalent(Ceq) values of SM570TMC steel, which were related to welding performance, were lower than those of equivalent as rolled steel.

A Study on the Characteristics of SM570TMC Plates in Compression Members (SM570TMC 강재의 압축재 특성에 관한 연구)

  • Im, Sung Woo;Kim, Yo Suk;Chang, In Hwa
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.3 s.76
    • /
    • pp.357-363
    • /
    • 2005
  • There is a great need for high-strength steel especially for the high-rise steel building structure. High-strength steels, however, may have mechanical properties that are significantly different from those of the conventional steels. The application of high-strength steels to building structures should be reviewed as to whether the inelastic behavior equivalent to that of conventional steels can be attained or not. In this study, SM570TMC steel was tested to evaluate buckling strength under axial compressive force. The comparison tests for local buckling strength evaluation of box-type and H-shaped welded columns were performed with variable width-thickness ratios. As for the experimental check, the maximum strength of stub column was determined by local buckling as far as the limit of width-to-thickness ratio was satisfied with current design codes. Also, the strength of the stub column did not decrease suddenly by local buckling before maximum strength even when the ratio is not satisfied. The buckling strength of SM570TMC steel was higher than both ASD (Allowable Stress Design) and LRFD (Load and Resistance Factor Design) specifications.

A Study on the Ripple Effect Economy of Busan Ubiquitous-Safety Realization on Using an Input-Output Model (I-O모형을 이용한 부산 U-방재 실현의 경제적 파급 효과 분석에 관한 연구)

  • Ryu, Tae-Chang;Kim, Tae-Min;Kim, Gyeong-Su
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.6
    • /
    • pp.93-100
    • /
    • 2008
  • Dense of population construction and high density of skyscraper, and geological characteristics caused natural disasters(e.g. typhoon, tsunami, flood, storm, earthquake, etc.) and manmade disasters(e.g. fire, collapse, explosion, traffic accident, etc.). the extent and scale of the disaster are getting larger. To cope with such problems, Busan City has established the basic plan to secure the life and property of the citizens through model strategy and design of Ubiquitous-Safety Busan. This study quantitatively analyzed the ripple effect on local economy through the fulfillment of Ubiquitous-Safety. The production inducing effect of 250 billion won directly and indirectly can be estimated due to the realization of Ubiquitous-Safety. The value added effect of 115 billion won can be estimated. the employment effect of 5,580 persons can be generated with income effect of 51 billion won.

Prediction of Hydrofracture of Rock Salt under Ground at the Waste Isolation Pilot Plant (지하 핵 폐기물 저장 암염의 파괴현상 검증 및 분석)

  • Heo, Gwang-Hee;Lee, Cheo-Keun;Heo, Yol
    • Geotechnical Engineering
    • /
    • v.11 no.3
    • /
    • pp.139-162
    • /
    • 1995
  • The possibility of the development of gas driven hydrofractures at the Waste Isolation Pilot Plant(WIPP) is investigated through analytical and numerical calculations and through laboratory experiments. First, an investigation of the chemical reactions involved shows that a large volume of gas could potentially be generated through the oxidation of iron in the waste. Simple ground water'flow calculations then show that unless regions of high permeability has been created, this gas volume will build up the pressure high enough to cause tensile damage in the horizontal planes of weakness or in the halite itself. The analytical calculations were performed using the concepts of linear elastic fracture mechanics and the numerical calculations were done using the finite element method. Also, laboratory tests were conducted to illustrate possible failure mechanisms. It is possible that after growing horizontal crack in the weaker anhydride layer, the crack could break out of this layer and propagate upward into the halite and toward the ground surface at an inclined argle of around 53$^{\circ}$ above horizontal. To prevent this latter phenomenon the anhydrite must have a fracture toughness less than 0.5590 times than that of the halite. Through the tests, three types of crack(radial vertical cracks, horizontal circular cracks and cone -shaped cracks) were observed.

  • PDF

Elasto-plastic Earthquake Response Analysis of Beam-Shear Wall Structural System (보-전단벽식 구조 시스템의 탄소성 지진응답 해석)

  • 정명채;이정원
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.57-67
    • /
    • 1997
  • The objective of present paper is to investigate elasto-plastic behaviour and estimate the resistance capacity of a beam-shear wall structural system against earthquake ground accleration exciations. Pushover analysis is adopted to estimate inttiate and post stiffnesses and yielding point for inelastic response analysis in LPM (Lumped Parameter Mass) model, and modified Clough model is used as the hysteresis rule of each story. Three earthquake waves are used in the analysis but their peak ground accelerations are changed to be 0.12g, 0.24g. It is assumed that the earthquakes act in the longigtudianl direction of a 25 Story apartment building which consists of two some unit plan. The distribution of story ratio and ductility ratio are estimated and discussed within Korean, Japanese code and UBC.

  • PDF

A study of Operation Criteria of Tower-crane for Automatic Transportation Considering Swung Member (양중작업 자동화를 위한 부재진동에 따른 타워크레인의 작업가능 기준 연구)

  • Shin, Yoon-Seok;Jin, Il-Guan;An, Sung-Hoon;Cho, Hun-Hee;Kang, Kyung-In
    • Korean Journal of Construction Engineering and Management
    • /
    • v.9 no.2
    • /
    • pp.108-116
    • /
    • 2008
  • At present, construction automation is a critical solution for the shortage of labor and the aging of skilled workers. Especially, researches for transportation automation are achieved to improve the efficiency as the construction of tall-building construction. Transportation automation needs to control the swung member by the inertia and/or the wind-force at the end of cable. However, previous to control, the presupposition of the swing is heavily difficult work because the inertia and the wind force are irregularly changable according to work condition. Therefore, in this study, dynamic modeling of crane and simulation was performed to find the characteristic of the swing. In the result, the maximum displacement of the swung material was analyzed. And, on the basis of analysis, the criteria to decide workability of automated transportation considering the material size and the wind force onsite was proposed.

A Model on the Stability Analysis of Supporting Structure of Climbing-Type Tower Cranes (상승식 타워크레인 지지구조의 안정성 검토 모델)

  • Ho, Jong-Kwan;Kim, Ah-Young;Kim, Sun-Kuk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.9 no.2
    • /
    • pp.190-198
    • /
    • 2008
  • Recently construction equipments have been used in line with building the structures that have become taller, larger and complex. And as the works at the elevated level for apartment and residential-commercial building projects have been on the rise, the number of tower cranes mobilized tends to be increased too. Due to such an increase in using the equipment serves the critical factor for the project management. The climbing-type tower crane, which increases its height following the structure, has been increased and the need for selecting the optimal model has been increasingly Important in securing the stability. The study hereby proposes the model to evaluate the stability of the climbing-type tower crane. The model was designed to assist in selecting the type of crane as well as in developing the design of Collar comprising the 3 types of support member, evaluating the stability and designing the embed. The model proposed is expected to make commitment in selecting the optimal type of equipment and evaluating the support member and embed for enhancing the stability, thereby ultimately enabling to implement the prefect in efficient way.

The Buckling Behavior of High-strength Steel Truss Columns with Box Section (박스단면 고강도 트러스 기둥재의 좌굴거동)

  • Jang, Gab-Chul;Chang, Kyong-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.3 s.25
    • /
    • pp.79-86
    • /
    • 2007
  • Recently, as steel structures become higher and more long-spanned, construction of high-strength steels is increasing gradually. Application of high-strength steel can be possible to make a more light and economic steel structures by reducing thickness and space. To apply a high-strength steel to structure, criteria of high-strength steel for buckling is required. However, current specification is not sufficient for criteria of high-strength steels. In this paper, buckling behavior of high-strength steel truss columns with box sections is investigated by using three-dimensional elastic-plastic finite deformation analysis program. The criteria equation for allowable compressive stress of high-strength steel truss columns with box sections is proposed and confirmed the applicability. It is reasonable form analytical results that formulated equations after finding the upper limit of allowable axial direction compression stresses of high-strength steel truss columns. And new equation is suitable to buckling design of high-strength steel truss columns.

  • PDF

Field Measurements of Ground Movements Around Tunnel (현장계측에 의한 터널주변지반의 변위연구)

  • 홍성완;배규진
    • Geotechnical Engineering
    • /
    • v.1 no.2
    • /
    • pp.41-54
    • /
    • 1985
  • Generally, ground settlements and lateral displacements are accompanied by underground excavation associated with open-cut or tunnling. These ground movements cause a harmful influence upon nearby super.structures and sub-structures. Occasionally, the ground movements may pose serious problems as the function of the nearby structures may be disrupted. Therefore, prior to the subway construction in an urban area, it is necessary to identify the causes of ground settlements and estimating the extent St the magnitude of ground movements since any potential damage to the nearby structures such as gas lines, water mains, high buildings and cultural assets must be assessed. The research was performed mainly on ground movements such as surface settlements, lateral displacements, subsurface settlements and crown settlements to predict the maximum settlement and settlement zone, and to identify the causes of ground settlements in NATM sections of Busan subway. As a result, it was found that lateral distribution of settlements could be approximated reasonably by a Gaussian normal probability curve and longitudinal distribution of settlements by a cumulative Gaussian probability curve, and that the early closure of temporary invert was very important to minimize ground settlements.

  • PDF

An Experimental Study of Fire Risk Characteristic by Extended Balcony of High-Rise Apartments in Fire (고층아파트 화재시 발코니 확장에 따른 화재 위험성에 관한 실험 연구)

  • Kim, Woo-Suk;Kim, Wha-Jung;Lee, Gwang-Won;Lee, Ji-Hee
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.2
    • /
    • pp.65-71
    • /
    • 2012
  • Changes in the styles of communities are leading of increases in the number of high-rise apartments and commercial-apartment structures. Tall high-rise structures, while presenting unique economies of scale and cost effectiveness, tend to be highly engineered and complex structures. In the event of a fire, this complexity in design also results in a complexity in the behavior of fire propagation and control. High-rise structures are among the most potentially dangerous due to the high population density in the building, and the inherent limitations on evacuation and on fire control services. One of the most critical points of fire propagation is the movement of fire through the outer wall structures. Controlling such propagation is essential in controlling the spread of the fire throughout the building itself, as well as controlling the potential for its spread to adjacent buildings. In this study, we will be examining the potential for fire control design and effects mitigation using a 1/4.5 scale model. The primary focus of the study will be the effects of extended balconies into the structure of high-rise apartments. The authors will also consider the effectiveness of reduced-scale model tests.