• Title/Summary/Keyword: 고층

Search Result 1,320, Processing Time 0.027 seconds

Performance Evaluation of KOMPSAT-3 Satellite DSM in Overseas Testbed Area (해외 테스트베드 지역 아리랑 위성 3호 DSM 성능평가)

  • Oh, Kwan-Young;Hwang, Jeong-In;Yoo, Woo-Sun;Lee, Kwang-Jae
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1615-1627
    • /
    • 2020
  • The purpose of this study is to compare and analyze the performance of KOMPSAT-3 Digital Surface Model (DSM) made in overseas testbed area. To that end, we collected the KOMPSAT-3 in-track stereo image taken in San Francisco, the U.S. The stereo geometry elements (B/H, converse angle, etc.) of the stereo image taken were all found to be in the stable range. By applying precise sensor modeling using Ground Control Point (GCP) and DSM automatic generation technique, DSM with 1 m resolution was produced. Reference materials for evaluation and calibration are ground points with accuracy within 0.01 m from Compass Data Inc., 1 m resolution Elevation 1-DSM produced by Airbus. The precision sensor modeling accuracy of KOMPSAT-3 was within 0.5 m (RMSE) in horizontal and vertical directions. When the difference map was written between the generated DSM and the reference DSM, the mean and standard deviation were 0.61 m and 5.25 m respectively, but in some areas, they showed a large difference of more than 100 m. These areas appeared mainly in closed areas where high-rise buildings were concentrated. If KOMPSAT-3 tri-stereo images are used and various post-processing techniques are developed, it will be possible to produce DSM with more improved quality.

Vertical Measurement and Analysis of Meteorological Factors Over Boseong Region Using Meteorological Drones (기상드론을 이용한 보성 지역 기상 인자의 연직 측정 및 분석)

  • Chong, Jihyo;Shin, Seungsook;Hwang, Sung Eun;Lee, Seungho;Lee, Seung-Hyeop;Kim, Baek-Jo;Kim, Seungbum
    • Journal of the Korean earth science society
    • /
    • v.41 no.6
    • /
    • pp.575-587
    • /
    • 2020
  • Meteorological phenomena are observed by the Korea Meteorological Administration in a variety of ways (e.g., surface, upper-air, marine, ocean, and aviation). However, there are limits to the meteorological observation of the planetary boundary layer (PBL) that greatly affects human life. In particular, observations using a sonde or aircraft require significant observational costs in economic terms. Therefore, the goal of this study was to measure and analyze the meteorological factors of the vertical distribution of the see-land breeze among local meteorological phenomena using meteorological drones. To investigate the spatial distribution of the see-land breeze, a same integrated meteorological sensor was mounted on each drone at three different points (seaside, bottom of mountain, and mountainside), including the Boseong tall tower (BTT) at the Boseong Standard Weather Observatory (BSWO) in the Boseong region. Vertical profile observations for air temperature, relative humidity, wind direction, wind speed, and air pressure were conducted up to 400 m every 30 minutes from 1100 LST to 1800 LST on August 4, 2018. The spatial characteristics of meteorological phenomena for temperature, relative humidity, and atmospheric pressure were not shown at the four points. Strong winds (~8 m s-1) were observed from the midpoint (~100 m) at strong solar radiation hour, and in the afternoon the wind direction changed from the upper layer at the inland area to the west wind. It is expected that the analysis results of the lower atmospheric layer observed using the meteorological drone may help to improve the weather forecast more accurately.

The Floor Layout Plan of Classrooms for Securing Evacuation Stability in School (학교의 피난 안전성 확보를 위한 층별 학급 배치방안)

  • Lee, Soon Beom;Lee, Jai Young;Kong, Ha-Sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.3
    • /
    • pp.509-515
    • /
    • 2021
  • This study analyzes the efficient floor layout plan of classrooms for securing evacuation stability in school in case of fire by using the Pathfinder simulation program. Efficient evacuation methods and safety were evaluated by analyzing REST (Required Safe Egress Time) according to the allocation of personnel by floor targeting a high school 5-story building equipped with a ramp and stairs. The current status of personnel assignments exceeded the Required Safe Egress Time(RSET), resulting in a problem with evacuation safety. When students were placed on the 3rd, 4th, and 5th floors, the result was that the time exceeded RSET the most. When students were placed on the 1st, 2nd, and 3rd floors, the result was that they completed evacuation in the shortest time, less than RSET. In the current state, when evacuation was guided by designating an evacuation exit depending on the location, the result of shortening RSET was obtained. As a result, it is effective to put the students on the lower floors when placing students in high-rise school buildings in terms of evacuation safety, and in the preliminary training, it is required to designate evacuation exits so that they can use the nearest exit for each location in case of a fire. As a future research project, additional research is needed on the RSET when a fire occurs in a specific location according to whether the automatic fire door at that location is opened or closed.

Safety Evaluation of Evacuation in a Dormitory Girls' High School based on PAPS (PAPS에 기반한 여자고등학교 기숙사생의 피난 안전성 평가)

  • Jeon, Seung-duk;Kong, Ha-sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.1
    • /
    • pp.469-481
    • /
    • 2022
  • This study is for increasing evacuation safety by analyzing RSET(the required safe escape time) through the arrangement of personnel by floor and by room while evacuating in a Girls' High School Dormitory. For this study, PAPS(Physical Activity Promotion System) results that have not been studied so far were analyzed and reflected in evacuation simulations on the premise that individual student's physical strength can affect evacuation. Based on the PAPS results, four scenarios were applied. In addition, evacuation simulation using the pathfinder program was conducted in two situations: the evacuation route was assigned or not. Scenario 4 was the fastest at 168.5 seconds of RSET in assigning evacuation routes among scenarios. As a result of this study, the arrangement of students focusing on improving their academic ability and student life guidance excluding student physical strength has problem. In order to solve this problem, it is effective to place C group students(low grade on PAPS) on low floors and A group students(high grade on PAPS) on high floors and to assign evacuation routes in each room. In the future, the following ways need to be more studied. A study on how to increase evacuation safety through practical evacuation training, the way of assessing evacuation safety reflecting the lifestyle and physical strength of girls, the evacuation route assignment according to the fire occurrence point, and the method to secure evacuation routes in the event of a fire near stairs or entrances should be conducted.

Numerical Analysis of Wind Environment around Sungnyemun Gate Using a Computational Fluid Dynamics Model (전산유체역학 모델을 이용한 숭례문 주변의 풍환경 수치해석)

  • Son, Minu;Kim, Do-Yong
    • Journal of Conservation Science
    • /
    • v.37 no.3
    • /
    • pp.209-219
    • /
    • 2021
  • In this study, the wind environment in an urban area near Sungneymun gate was numerically investigated in the cases of inflow directions. The wind fields for the target area were simulated using Geographic Information System data and Computational Fluid Dynamics model. Results, including vector fields, three-dimensional wind velocity components, and wind speeds, were analyzed to examine flow characteristics. Wind direction variability affected by buildings was shown in the target area. The complex flows around Sungneymun did not depend on the inflow direction as a boundary condition. The wind speed around Sungneymun was generally 3 times stronger at 14 m above ground level (AGL) compared to the surface wind at 2 m AGL and relatively high in the case of easterly inflow. The effect of wind was also analyzed to be relatively significant at the southeast side of Sungneymun. Thus, it was suggested that the assessment of wind environment affected by high-rise and high-density buildings should be necessary for the architectural heritage in urban areas.

Analysis of Evacuation Time According to Variation of Evacuation Stairs' Width in Large-Scale Goshiwons (대규모 고시원의 피난계단 폭의 변화에 따른 피난소요시간 분석)

  • Oh, Su-cheol;Kong, Ha-Sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.641-651
    • /
    • 2022
  • This research compares and analyzes evacuation time depending on the change in stair width in case of fire at Goshiwons. For this, a simulation has been conducted based on possible evacuation time according to the calculation method for the number of people admittable to a specific target for fire fighting equipped with accommodation. Currently, Gosiwon, which is classified as an accommodation facility (a total floor area of 500 m2 or more), uses blind spots prescribed by the Fire Services Act, Building Act, and Parking Act to build a high-rise building on a small area of land, and most Gosiwon is transformed into a modified accommodation. This is in line with the owner's operating profit, so it is expected to show a continuous increase. Securing the golden time of Gosiwon evacuation time is the last bastion of Gosiwon residents who belong to the economically disadvantaged in our society, and we hope this study will serve as a starting point for discussions on revising related laws and regulations to establish a social safety net As a result of the evacuation simulation analysis, the evacuation time was the least when the width of the group and the evacuation stairs were expanded to 200cm, and the evacuation time of the existing building was reduced by up to 166.3 seconds by comparing 648.4 seconds and scenario 6. This analysis can be meaningful, in that the width of the evacuation stairs revision of related laws and regulations for the safety of multiplex available premises.

Differences between Sale Prices and Lotting Prices in New Multi-family Housing Considering Housing Sub-Market (주택하부시장 특성을 고려한 신규 분양가와 입주후 가격 변화에 관한 연구)

  • Choi, Yeol;Kim, Hyung Soo;Park, Myung Je
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4D
    • /
    • pp.523-531
    • /
    • 2008
  • This study tried to find differences between housing lotting prices and sale prices owing to new multi-family housing price regulation. As the results of this study, they are as follows; First, this study shows housing market in Busan has a preferences of new housing which has a new housing form differing from the existing housing form. For example, the mixed-use apartment with higher stories shows steeper incline than the apartments with the existing forms. Second, the new housing prices are affected by the information that affect the price of the old existing housing. They are rates of green area of an apartment complex, the number of household, accessibility to downtown Busan and etc.. They are also confirmed factors that affect a rise of used-housing price in other studies. Third, brand value of apartments affects new housing prices. For example, if the major construction companies build the new apartment, it shows a rising trend than any other housing. Therefore, the local construction companies are expected to be put on a disadvantage places than major construction companies. Fourth, the lotting prices are the most important cause that lead to rise the new housing prices. Accordingly, the present lotting prices are expected that upward tendency the purchasing prices of the new housing will not continue, because the lotting prices have risen since the government removed lotting price regulations and exceeded the level of used-housing prices. And it denote that importance of housing sub-market which indicates rates of old existing housing market rising, frist preference Gu, second preference Gu, rate of multi-family housing.

Evaluation of floor impact sound and airborne sound insulation performance of cross laminated timber slabs and their toppings (구조용 직교 집성판 슬래브와 상부 토핑 조건에 따른 바닥충격음 및 공기전달음 평가)

  • Hyo-Jin Lee;Yeon-Su Ha;Sang-Joon Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.6
    • /
    • pp.572-583
    • /
    • 2023
  • Demand for wood in construction is increasing worldwide. In Korea, technical reviews of high-rise Cross Laminated Timber (CLT) buildings are under way. In this paper, Floor Impact Sound Insulation Performance (FISIP) and Transmission Loss (TL) of 150 mm thick CLT floor panels made of two domestic species, Larix kaempferi and Pinus densiflora, are investigated. The CLT slabs were tested in reverberation chambers connected vertically. When comparing Single Number Quantity (SNQ) of FISIP of the bare panels, the Larix CLT is 3 dB lower in heavy-weight and 1 dB in light-weight than the Pinus CLT. However, there was no difference when concrete toppings were added to improve the performance. As the concrete toppings became thicker, the heavy-weight was reduced by 9 dB ~ 20 dB, and the light-weight by 20 dB ~ 30 dB. And the analysis of these results with area density has confirmed that the area densities are highly correlated (R2 = 0.94 ~ 0.99) to the FISIP of the CLT. The types of CLT didn't affect the TL. Comparison of theoretical TL values with measured TL values has shown that the frequency characteristics are similar but 8 dB ~ 12 dB lower in measured values. The relationship between the TL and frequency characteristics of the tested CLT slabs was derived by using the correction value.

A Study on the Construction Equipment Object Extraction Model Based on Computer Vision Technology (컴퓨터 비전 기술 기반 건설장비 객체 추출 모델 적용 분석 연구)

  • Sungwon Kang;Wisung Yoo;Yoonseok Shin
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.4
    • /
    • pp.916-923
    • /
    • 2023
  • Purpose: Looking at the status of fatal accidents in the construction industry in the 2022 Industrial Accident Status Supplementary Statistics, 27.8% of all fatal accidents in the construction industry are caused by construction equipment. In order to overcome the limitations of tours and inspections caused by the enlargement of sites and high-rise buildings, we plan to build a model that can extract construction equipment using computer vision technology and analyze the model's accuracy and field applicability. Method: In this study, deep learning is used to learn image data from excavators, dump trucks, and mobile cranes among construction equipment, and then the learning results are evaluated and analyzed and applied to construction sites. Result: At site 'A', objects of excavators and dump trucks were extracted, and the average extraction accuracy was 81.42% for excavators and 78.23% for dump trucks. The mobile crane at site 'B' showed an average accuracy of 78.14%. Conclusion: It is believed that the efficiency of on-site safety management can be increased and the risk factors for disaster occurrence can be minimized. In addition, based on this study, it can be used as basic data on the introduction of smart construction technology at construction sites.

Field Applicability Evaluation Experiment for Ultra-high Strength (130MPa) Concrete (초고강도(130MPa) 콘크리트의 현장적용성 평가에 관한 실험)

  • Choonhwan Cho
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.20-31
    • /
    • 2024
  • Purpose: Research and development of high-strength concrete enables high-rise buildings and reduces the self-weight of the structure by reducing the cross-section, thereby reducing the thickness of beams and slabs to build more floors. A large effective space can be secured and the amount of reinforcement and concrete used to designate the base surface can be reduced. Method: In terms of field construction and quality, the effect of reducing the occurrence of drying shrinkage can be confirmed by studying the combination of low water bonding ratio and minimizing bleeding on the concrete surface. Result: The ease of site construction was confirmed due to the high self-charging property due to the increased fluidity by using high-performance water reducing agents, and the advantage of shortening the time to remove the formwork by expressing the early strength of concrete was confirmed. These experimental results show that the field application of ultra-high-strength concrete with a design standard strength of 100 MPa or higher can be expanded in high-rise buildings. Through this study, we experimented and evaluated whether ultra-high-strength concrete with a strength of 130 MPa or higher, considering the applicability of high-rise buildings with more than 120 floors in Korea, could be applied in the field. Conclusion: This study found the optimal mixing ratio studied by various methods of indoor basic experiments to confirm the applicability of ultra-high strength, produced 130MPa ultra-high strength concrete at a ready-mixed concrete factory similar to the real size, and tested the applicability of concrete to the fluidity and strength expression and hydration heat.