• Title/Summary/Keyword: 고층

Search Result 1,322, Processing Time 0.028 seconds

Study on Measurement Method of Air Egress Velocity in Vestibule of Smoke Control System (특별피난계단 부속실 제연설비의 방연풍속 측정 방법에 관한 연구)

  • Lee, Su-Kyung;Hong, Dae-Hwa
    • Fire Science and Engineering
    • /
    • v.25 no.3
    • /
    • pp.85-90
    • /
    • 2011
  • This study of the vestibule of pressurizing smoke control system installed in domestic high-rise buildings for evacuation in case of fire, when the door is open to forming characteristics of the air flow was analyzed using fire dynamics simulator and analyzed of variance. Vestibule which is compartment of the design condition, air flow in the exhaust damper was formed severe turbulence confirming preceding research. The door position is in the range of formed vortex, unsteady flow of air occurs at the point that the door could be confirmed. According to the NFSC 501A, door to symmetrically separate the average of 10 points or more as measured from the average of wind speed to do is based. Under these conditions, it is difficult to measure the characteristics of the upper air flow of upper points. so measuring points are subdivided by more than 64 points method presented in TAB because severe deviation of wind speed.

Seismic Response Evaluation of High-Rise Buildings Considering Installation Story of the Mid-Story Isolation System (중간층 면진시스템 설치 위치에 따른 고층건물의 지진응답 분석)

  • Kim, Ka-Yeong;Lee, Young-Rak;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.4
    • /
    • pp.85-92
    • /
    • 2017
  • Base isolation system is generally used for low-rise buildings. For high-rise buildings subjected to earthquake loads, a mid-story isolation system was proposed and applied to practical engineering. In this study, seismic responses of high-rise buildings considering the installation story of the mid-story isolation system were evaluated. To do this, the 20-story and 30-story building were used as example structures. Historical earthquakes such as Kobe (1995), Northridge (1994) and Loma Prieta (1989) earthquakes were employed applied as earthquake excitations. The installation location of the mid-story isolation system was changed from the bottom of the $1^{st}$ floor to the bottom of the top floor. The seismic responses of the example building were investigated by changing the location of the isolation layer. Based on the analytical results, when the seismic isolation system is applied, story drift ratio and acceleration response are reduced compared to the case without the isolation system. When the isolation layer is located on the lower part of the building, it is most effective. However, in that case, the possibility that the structure is unstable increases. Therefore, an engineer should consider both structural efficiency and safety when a mid-story isolation system for a high-rise building is designed.

Analysis of Optimum Integration on the GNSS and the Vision System (GNSS와 Vision System의 최적 융합 분석)

  • Park, Chi-Ho;Kim, Nam-Hyeok;Park, Kyoung-Yong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.3
    • /
    • pp.13-18
    • /
    • 2015
  • This paper proposes an optimum vision system analysis and a reliable high-precision positioning system that converges a GNSS and a vision system in order to resolve position error and outdoor shaded areas two disadvantages of GNSS. For location determination of the object, it should receive signal from at least four GNSS. However, in urban areas, exact location determination is difficult due to factors like high buildings, obstacles, and reflected waves. In order to deal with the above problem, a vision system was employed. First, determine an exact position value of a target object in urban areas whose environment is poor for a GNSS. Then, identify such target object by a vision system and its position error is corrected using such target object. A vehicle can identify such target object using a vision system while moving, make location data values, and revise location calculations, thereby resulting in reliable high precision location determination.

A Study of a Reliable Positioning Based on Technology Convergence of a Satellite Navigation System and a Vision System (위성항법시스템과 비전시스템 융합 기술 기반의 신뢰성있는 위치 측위에 관한 연구)

  • Park, Chi-Ho;Kwon, Soon;Lee, Chung-Hee;Jung, Woo-Young
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.10
    • /
    • pp.20-28
    • /
    • 2011
  • This paper proposes a reliable high-precision positioning system that converges a satellite navigation system and a vision system in order to resolve position errors and outdoor shaded areas, two disadvantages of a satellite navigation system. In kinematic point positioning, the number of available satellite navigation systems changes in accordance with a moving object's position. For location determination of the object, it should receive location data from at least four satellite navigation systems. However, in urban areas, exact location determination is difficult due to factors like high buildings, obstacles, and reflected waves. In order to deal with the above problem, a vision system was employed. First, determine an exact position value of a specific building in urban areas whose environment is poor for a satellite navigation. Then, identify such building by a vision system and its position error is corrected using such building. A moving object can identify such specific building using a vision system while moving, make location data values, and revise location calculations, thereby resulting in reliable high precision location determination.

Assessment of Lifeline Construction Technology for Buried Alive in Building Collapse (도심지 붕괴사고에 따른 매몰지역 생명선 시공기술 평가)

  • Ryu, Byung-Hyun;Kang, Jae-Mo;Lee, Jangguen;Kim, Young-Sam;Joo, Rak-Bong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.9
    • /
    • pp.47-52
    • /
    • 2016
  • Unusual extreme weather events, which exceed a safe design capacity of the infrastructure, increase the frequency of natural disasters and has also been enlarged damage scale. Aging buildings and rapid urban progress act as weighting factors for the new composite disasters. Technological advances support detecting pre-disaster risk, real-time data analysis, and rapid response to the disaster site, but it is insufficient that emergency relief for buried alive must take advantage of the proven technologies through field tests. This study aims to evaluate directional drilling performance through underground soils and the reinforced concrete structure for primary lifeline installation in order to quickly provide relief supplies for buried alive when urban structures collapse.

Analysis of Block Geometry of UltraCamX (UltraCamX 카메라의 블록기하 분석)

  • Lee, Seung Bok;Lee, Jae One;Cha, Sung Yeoul;Yun, Bu Yeol
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.2
    • /
    • pp.45-51
    • /
    • 2013
  • Today, people who live in sea of information are strongly appearing desire about quicker and more accurate information. For a long time people wanted to know information about place that I am and where I must go out, and there are various methods to have a keen desire for position information. Equipment that is using most among the method is digital camera. In this study, the accuracy of external orientation, GCP and check point depending on array of GCP and regional feature are analyzed after AT(aerial triangulation) with UltraCamX in three selected study area with specific feature. As analysis result, we could get to know that area with a mountainous district rapidly decreased accuracy of external orientation according as number of GCP decreases, and area with high buildings became low in vertical accuracy of checkpoint. This study has performed the analysis of regional factors in aerial triangulation accuracy.

Improvement of Elevator Management System after Completion (준공 이후 승강기 관리체계 개선에 관한 연구)

  • Cho, Young-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.5
    • /
    • pp.455-461
    • /
    • 2016
  • To operate a large structure or a high-rise building, elevator is essential. Nevertheless, elevator breakdowns or accidents have been consistently reported. When the accidents are not serious, the records are not reported and cumulated in the Korea Elevator Safety Agency. Additionally, in case of replacement or repair of the parts of elevator, conflicts about the person responsible for the expense of the replacement or repair are frequently occurred. However the record of accidents is not decreasing and the conflict about the fund of elevator repair is serious. So, it is needed to reduce the elevator accidents or malfunction, the operation stop of the elevator, the conflict between building owners and users. Therefore, in this study, the elevator maintenance procedures during defect liability period, the notification procedure in case of breakdown or accident elevator, the direction of elevator maintenance contracts, the direction of the elevator inspection were suggested.

Analysis of the Factors Influencing the Demolition Costs (건축물 해체공사비 변동 영향요인 분석)

  • Shin, Dong-Wook;Cho, Kyu-Man;Lee, Ung-Kyun;Kim, Tae-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.5
    • /
    • pp.499-506
    • /
    • 2018
  • The number of demolition work is rapidly increasing because the middle- and high-rised buildings constructed over the rapid industrialization and urbanization have been deteriorated in social and structural aspects. However, theoretical approaches or studies related to the demolition cost prediction are still insufficient. Thus, this study derived and analyzed important factors affecting the fluctuation of the building demolition costs. 14 factors was derived through literature reviews and experts' interview, and the importance of each factor was analyzed to the each work(temporary work, structure demolition, and waste disposal) and the entire demolition work by using descriptive analysis. The survey results showed that the demolition costs was greatly influenced by environmental properties of the site. The results of this study can be used as a basis for estimating the approximate cost of the demolition work.

The application of tact time at finish work for building construction - Focused on Office Building - (건축마감공사에서의 택트타임 설정을 통한 작업조정 프로세스 개발 - 오피스 건축물을 중심으로-)

  • Yoon, You-Sang;Suh, Sang-Wook
    • Korean Journal of Construction Engineering and Management
    • /
    • v.6 no.6 s.28
    • /
    • pp.90-97
    • /
    • 2005
  • Poor usage of work-continuity for planning and management is one of the leading causes of decreased productivity in high-rise and complexity construction projects. For efficient finish work, tact scheduling method needs to be implemented according to tact time. But there are the studies about zoning of work area, daily construction information and tact planning and management, there are not the studies about tact time yet. The purpose of this study is to help implementation of tact scheduling by tact time and adjusted work-plan. The main contents of this study are as follow; (1)Tact time has been calculated as coordination of work-plan between a general contractor and specialties. (2)Project-plan can be without delay by tact time calculation method.

Vision-Based High Accuracy Vehicle Positioning Technology (비전 기반 고정밀 차량 측위 기술)

  • Jo, Sang-Il;Lee, Jaesung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.12
    • /
    • pp.1950-1958
    • /
    • 2016
  • Today, technique for precisely positioning vehicles is very important in C-ITS(Cooperative Intelligent Transport System), Self-Driving Car and other information technology relating to transportation. Though the most popular technology for vehicle positioning is the GPS, its accuracy is not reliable because of large delay caused by multipath effect, which is very bad for realtime traffic application. Therefore, in this paper, we proposed the Vision-Based High Accuracy Vehicle Positioning Technology. At the first step of proposed algorithm, the ROI is set up for road area and the vehicles detection. Then, center and four corners points of found vehicles on the road are determined. Lastly, these points are converted into aerial view map using homography matrix. By analyzing performance of algorithm, we find out that this technique has high accuracy with average error of result is less than about 20cm and the maximum value is not exceed 44.72cm. In addition, it is confirmed that the process of this algorithm is fast enough for real-time positioning at the $22-25_{FPS}$.