• Title/Summary/Keyword: 고추역병균

Search Result 46, Processing Time 0.028 seconds

Metalaxyl Sensitivity Related with Distribution Feature of Mating Type of Phytophthora capsici Population from Red Pepper in Korea (국내 고추역병균 Phytophthora capsici 집단의 교배형 분포 특성에 따른 Metalaxyl 감수성)

  • Song, Jeong-Young;Yoo, Sung-Joon;Lee, Youn-Su;Kim, Byung-Sup;Kim, Hong-Gi
    • The Korean Journal of Mycology
    • /
    • v.31 no.2
    • /
    • pp.98-102
    • /
    • 2003
  • Metalaxyl sensitivity related with distribution feature of mating type was characterized far Phytophthora capsici population, totally 433 isolates of the red-pepper pathogen collected from 75 pepper fields in Korea from 1995 to 1998. At the concentration of metalaxyl $2{\mu}g/ml$, inhibition rate of mycelial growth of P. capsici isolates was 68.2% in average compared to control, and 28.6% isolates in average were estimated as resistance to the chemical. Isolates of field unit with a single mating type revealed similar level of sensitivity to metalaxyl and showed sensitive or resistant in most field units. However, isolates of field units with both mating types revealed diverse sensitivity level to the chemical and various occurrence ratio of metalaxyl sensitive : resistant in each field unit. Results indicated that different levels of metalaxyl sensitivity of P. capsici population in Korea seem to be closely related with occurrence ratio of A1 : A2 mating type of each field.

3D-QSAR Analysis on the Fungicidal Activity with N-Phenylbenzenesulfonamide Analogues against Phytophthora blight (Phytophthora capsici) and Prediction of Higher Active Compounds (고추역병균(Phytophthora capsici)에 대한 N-Phenylbenzenesulfonamide 유도체들의 살균활성에 관한 3D-QSAR 분석과 고활성 화합물의 예측)

  • Soung, Min-Gyu;Kang, Kyu-Young;Cho, Yun-Gi;Sung, Nack-Do
    • Applied Biological Chemistry
    • /
    • v.50 no.3
    • /
    • pp.192-197
    • /
    • 2007
  • 3D-QSARs on the fungicidal activity of N-phenylbenzenesulfonamide and N-phenyl-2-thienylsulfonamide analogues (1-37) against Phytophthora blight (Phytophthora capsici) were studied quantitatively using CoMFA and CoMSIA methods. The statistical results of the optimized CoMFA (2) model ($r^2_{cv.}(q^2)$ = 0.692 & $r^2_{ncv.}$= 0.965) show better predictability and fitness than CoMSIA (2) model ($r^2_{cv.}(q^2)$ = 0.796 & $r^2_{ncv.}$= 0.958). The fungicidal activities according to the information of the optimized CoMFA (2) model were dependent upon the steric and electrostatic fields of the molecules. Therefore, from the contribution contour maps of CoMFA (2) model, it is expected that 63% contribution was caused by the steric bulk of meta-substituent ($R_1$) on the S-phenyl ring. Also, the other contribution level of 32.9% was represented by the positive charged $R_4-group$ ($R_1$) on the N-phenyl ring and para-substituent ($R_1$) on the S-phenyl ring. A series of higher active compounds, $R_1$= 3-decyl substituent ($pred.pI_50$= 5.88) etc. were predicted based on the findings.

An Antifungal Subatance, 2,4-Diacetylphloroglucinol Produced from Antagonistic Bacterium Pseudo-monas fluorescens 2112 Against Phytophthora capsici (Phytophthora capsici를 길항하는 Pseudononas fluorescens 2112가 생산하는 항진균 항생물질 2,4-diacetylphloroglucinol)

  • 이은탁;김상달
    • Microbiology and Biotechnology Letters
    • /
    • v.29 no.1
    • /
    • pp.37-42
    • /
    • 2001
  • An antifungal substance was purified from culture broth of Pseudomonas flulorescens 2112 that showed a broad-spectrum antagonistic activity against various phytopathogenic fungi including capsici. The substance was identified as 2,4-diacetylphloro-glucinol basd on NMR analysis. The 2,4-diacetylphloroglcinol showed antibiotic activity in broad acidic range from pH 1.0 to pH 9.0. About 83% of initial activity was remained after incubation for 30min ar $60^{\circ}C$, however, the activity was dropped up to 50% after 30 min incubation in $80^{\circ}C$. When the nucleotides of P. capsici treated with 2,4-diacetylphloroglucinol were labeled with[$^{3}$ H]-Adenin, the newly synthesized and radioactive-labeled RNA was significantly reduced than those of untreated P. capsici. indicating that the 2,4-diacetylphloroglucinol inhibits RNA synthesis.

  • PDF

Comparative Molecular Similar Indice Analysis on Fungicidal Activity of N-phenyl-O-phenylthionocarbamate Derivatives against Rice Sheath Blight and Phytophthora Blight (벼잎집무늬마름병균 및 고추역병균에 대한 N-Phenyl-O-phenyl-thionocarbamate 유도체들의 살균활성에 관한 비교분자 유사성 분석)

  • Soung, Min-Gyu;Yoo, Jae-Won;Jang, Seok-Chan;Sung, Nack-Do
    • Applied Biological Chemistry
    • /
    • v.50 no.3
    • /
    • pp.187-191
    • /
    • 2007
  • Comparative molecular similarity indice analysis (CoMSIA) models on the fungicidal activities of N-phenyl substituents (X) in N-phenyl-O-phenylthionocarbamate derivatives against rice sheath blight (Rhizoctonia solani: RS) and phytophthora blight (Phytophthora capsici: PC) were derived. Also, the characterizations of H-bonds between substrates and ${\beta}-tubulin$ were discussed quantitatively. It was revealed that, from the contour maps of CoMSIA models, the H-bond acceptor field contributed the most highly to fungicidal activity for two fungi in common. It is predicted that the selectivity in the fungicidal activity between two fungi is caused by results from the roles of H-bond donor disfavor functional groups in RS and H-bond acceptor disfavor functional groups in PC when these two groups induced at meta- and para-position on the N-phenyl ring. And also, if the substituents (X) are steric disfavor group, negative charge favor groups are introduced at the metaposition in RS and H-bond acceptor group is introduced at the para-position in PC, the antifungal activity against two fungi will be likely able to be increased.

Comparative Molecular Field Analyses on the Fungicidal Activities of N-phenylthionocarbamate Derivatives based on Different Alignment Approaches (상이한 정렬에 따른 N-phenylthionocarbamate 유도체들의 살균활성에 관한 비교 분자장 분석)

  • Sung, Nack-Do;Soung, Min-Gyu;You, Jae-Won;Jang, Seok-Chan
    • The Korean Journal of Pesticide Science
    • /
    • v.10 no.3
    • /
    • pp.157-164
    • /
    • 2006
  • Three dimensional quantitative structure-activity relationships (3D-QSARs) for the fungicidal activities against Rhizoctonia solani (RS) and Phytophthora capsici (PC) by N-phenyl substituents(X) of N-phenylthionocarbamate derivatives were studied quantitatively using comparative molecular field analysis (CoMFA) methodology based on different alignment approaches. Statistical quality of CoMFA models with field fit alignment were slightly higher than that of atom based fit alignment. The optimized CoMFA models (RS: RF2 & PC: PF2) were derived from field fit alignment and combination of CoMFA fields. And the statistical results of the two models showed the best predictability of the fungicidal activities based on the cross-validated value $q^2$ ($r^2_{cv.}$ =RS: 0.557 & PC: 0.676) and non-cross-validated value ($r^2_{ncv.}$ =RS: 0.954 & PC: 0.968), respectively. The selective fungicidal activities between two fungi were dependence upon the electrostatic field of substrate molecule. Therefore, the fungicidal activities from CoMFA contour maps showed that the fungicidal activity will be able to increased according to the modification of X-substituents on the substrate molecules.

Selection and Antagonistic Mechanism of Pseudomonas fluorescens 4059 Against Phytophthora Blight Disease (고추역병과 시들음병을 방제하는 토착길항세균 Pseudomonas fluorescens 4059의 선발과 길항기작)

  • Jeong, Hui-Gyeong;Kim, Sang-Dal
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.4
    • /
    • pp.312-316
    • /
    • 2004
  • In oder to select the powerful rhizophere-dorminatable biocontrol agent, we had isolated an indigenous antagonistic bacterium which produced antibiotic and siderophore from a disease suppressive local field soil of Gyungsan, Korea. And we could select the Pseudomosp. 4059 which can strongly antagonize against Fusarium oxysporum and Phytophthora capsici by two kinds of antifungal mechanism that can be caused by the antibiotic of Phenazin, a siderophore and a auxin like subThe selected strain was identified as Pseudomonas fluorescens (biotype A) 4059 by biochemical tests, API $\textregistered$ test, MicroLog TM system and 16S rDNA analysis. The selected antagonistic microorganism, Pseudomosp. 4059 had an antifungal mechanism of antifungal antibiotic and sidrophore. And we were confirmed the antagonistic activity of P fluorescens 4059 with in vitro antifungal test against Phytophthora capsici and in vivo by red-pepper.

Phenyl substituent effect on the fungicidal activity of N-Phenyl-O-phenylthionocarbamate derivatives (N-Phenyl-O-phenylthionocarbamate 유도체의 항균활성에 미치는 phenyl 치환기의 효과)

  • Sung, Nack-Do;Soung, Min-Gyu
    • The Korean Journal of Pesticide Science
    • /
    • v.3 no.1
    • /
    • pp.29-36
    • /
    • 1999
  • A series of N-phenyl-O-phenylthionocarbamate derivatives were synthesized and determinated fungicidal activities in vitro against gray mold (Botrytis cinerea) and capsicum phytophthora blight (Phytophthora capsici) which showed resistance and sensitivity to benomyl and metalaxyl as systemic fungicides, respectively. The structure-activity relationship (SAR) was investigated by Free-Wilson analysis method and Hansch method. From the basis on the findings, the N-phenyl(X) groups had more contributions than O-phenyl(Y) groups did and ortho-substituents on the N-phenyl group showed high fungicidal activities. Especially, 4-cyano substituent, 2 as X-group showed 50% inhibition($pI_{50}=5.50$) of hyphae growth at 0.8ppm against resistance P. capsici (RPC) And hydroxyl substituents, 12 and 23 displayed the highest fungicidal activity against resistant B. cinerea (RBC), sensitive B. cinerea (SBC), and sensitive P. capsici (SPC). Antifungal activities of SPC were dependent upon molar refractivity (MR) constant and those of others relied on hydrophobic parameters (${\sigma}$ and logP). For increasing fungicidal activity against RPC and SBC, the optimum values of the sigma (${\sigma}$) and field(F) constants as electron withdrawing groups were 0.32 and 0.18, respectively.

  • PDF

Endophytic bacterium Pseudomonas fluorescens strain EP103 was effective against Phytophthora capsici causing blight in chili pepper (식물근권에서 분리한 Pseudomonas fluorescens strain EP103에 의한 고추역병억제)

  • Kim, Tack-Soo;Dutta, Swarnalee;Lee, Se Won;Park, Kyungseok
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.4
    • /
    • pp.422-428
    • /
    • 2014
  • Endophytic bacterial strains from root tissue of strawberry were screened for their efficacy in growth improvement and control of Phytophthora blight disease of chili pepper plant under greenhouse condition. Plants treated with the strain EP103, identified as Pseudomonas fluorescens, showed growth improvement in terms of fresh weight and root length compared to the untreated control and other endophytic strains. When challenged with Phytophthora capsici, there was significant reduction of disease in EP103 treated plants with an efficacy of 78.7%. There was no direct inhibition of the target pathogen by EP103 when tested under in vitro antibiosis assay. Analysis of differential expression of selected marker genes for induced systemic resistance (ISR) in plants treated with EP103 and challenged with P. capsici showed up-regulation of PR1 and PR10 pathogenesis-related (PR) proteins. PCR analysis showed that EP103 produced secondary metabolites such as pyoluteorin, pyrrolnitrin, hydrogen cyanide and orfamide A. This study indicated the potential of endophytic P. fluorescens strain EP103 as an efficient biocontrol agent against P. capsici in chili pepper plant.

Growth Promotion and Induction of Systemic Resistance Against Phytophthora capsici on Red-pepper Plant by Treatment of Trichoderma harzianum MPA167 (근권 Trichoderma harzianum MPA167 처리에 의한 생육촉진과 고추 역병균에 대한 고추의 유도저항성)

  • Yang, Nuri;Lee, Sae Won;Kim, Heung Tae;Park, Kyungseok
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.4
    • /
    • pp.394-401
    • /
    • 2013
  • Trichoderma harzianum is one of rhizosphere fungus usually lives near the plant root regions in the soil. T. harzianum plays an important role in plant growth promotion and increases disease resistance against various plant pathogens on crops. In this study, the strain T. harzianum MPA167 was isolated from the barley rhizosphere soil in Suwon, Korea. Among 183 isolates, the strain T. harzianum MPA167 was selected as promising strain in which based on hyperparasitical activity against Phytophthora capsici and estimated disease control activity against P. capsici in the greenhouse conditions. The strain T. harzianum MPA167 was identified using 23s rDNA internal transcribed spacer(ITS) region sequences. MPA167 treatment ($1{\times}10^6$ spores/ml) showed greater disease suppression against Phytophthora blight of red-pepper caused by P. capsici in greenhouse compared with the water-treated control. Volatiles derived from T. harzianum MPA167 elicit growth promotion of tobacco and Arabidopsis seedlings in I-plate assay. In addition, T. harzianum MPA167 strain was also found to be effective for the growth promotion and induction of systemic resistance on red-papper plant. These results suggest that MPA167 might be used as one of the potential biocontrol agents.

Antifungal Activity of Bacillus sp. GJ-1 Against Phytophthora capsici (Bacillus sp. GJ-1의 Phytophthora capsici에 대한 항진균활성)

  • Lee, Gun-Joo;Han, Joon-Hee;Shin, Jong-Hwan;Kim, Heung Tae;Kim, Kyoung Su
    • The Korean Journal of Mycology
    • /
    • v.41 no.2
    • /
    • pp.112-117
    • /
    • 2013
  • Phytophthora capsici is one of major limiting factors in production of pepper and other important crops worldwide by causing foliage blight and rot on fruit and root. Increased demand for the replacement of fungicides has led to searching a promising strategy to control the fungal diseases. To meet eco-friendly agriculture practice, we isolated microorganisms and assessed their beneficial effects on plant health and disease control efficacy. A total of 360 bacterial strains were isolated from rhizosphere soil of healthy pepper plants, and categorized to 5 representative isolates based on colony morphology. Among the 5 bacterial strains (GJ-1, GJ-4, GJ-5, GJ-11, GJ-12), three bacterial strains (GJ-1, GJ-11, GJ-12) presented antifungal activity against P. capsici in an fungal inhibition assay. In phosphate solubilization and siderophore production, the strain GJ-1 was more effective than others. The strain GJ-1 was identified as Bacillus sp. using 16S rDNA analysis. Bacillus sp. GJ-1 was also found to be effective in inhibiting other plant pathogenic fungi, including Rhizoctonia solani, Pythium ultimum and Fusarium solani. Therefore, the Bacillus sp. GJ-1 can serve as a biological control agent against fungal plant pathogens.