• 제목/요약/키워드: 고체연료 추진

Search Result 131, Processing Time 0.023 seconds

A Breakup Mechanism of Liquid Impinging Jet (I) (충돌분무에 의한 분열현상 (I))

  • 이충원;석명수;석지권
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.16-16
    • /
    • 1998
  • 로켓의 추진제에는 고체 추진제와 액체 추진제를 사용하는 두 경우로 나눌 수 있는데, 액체 추진제를 사용하는 경우, 액체 연료와 액체 산화제를 다양한 방법으로 연소실내로 분사하게 된다. 이때 사용되는 injector들 중에 impingement type이 있다. 이 type은 injector의 가공이 비교적 용이하고, 혼합성능이 좋기 때문에 LOX/RP-1(Kerosin-based hydrocarbon fuel)을 사용하는 액체 로켓엔진에서 주로 사용되어 왔다. 두 액체 jet의 충돌에 의해 액막이 형성되는데, 이 액막은 가장자리로 갈수록 두께가 얇아지며 액막표면의 파는 충돌점으로부터 멀어질수록 그 진폭의 증가를 이루어 액체의 표면장력과 관성력의 균형을 깨트리며, 이 순간 액막은 rim의 형태로 분열하여 결국에는 액적을 생성하게 된다. 현재까지의 연구내용은 충돌 jet의 형태 laminar jet과 turbulent jet으로 구분된 인젝트에 관해 연구되어왔고, 특히 국내에는 이러한 구분된 충돌 jet의 분열현상에 관한 연구결과가 미흡하다. 동일한 오르피스의 경우에도 laminar jet과 turbulent jet으로 구분되어 지며, 각각의 jet의 형태에 따라 생성되는 액막의 형상 또는 다르게 생성되어 진다. 그러므로 본 연구에서는 두 구분된 jet의 경우의 분열현상을 실험적으로 분석하였다.

  • PDF

Combustion Characteristics of a Small Hybrid Rocket Using Paraffin-Wax as Fuel (파라핀 연료를 사용하는 소형 하이브리드 로켓의 연소 특성)

  • Kim, Kwon-Ho;Park, Hyun-Chun;Baek, Seung-Wook
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.261-264
    • /
    • 2008
  • This study experimentally examines combustion characteristics of a hybrid rocket in which solid paraffin is used as a fuel, while oxidizer is pure oxygen. Especially, the experiment investigates the effects of chamber pressure and configuration of fuel grain. The pressure inside the combustion chamber is varied by changing a flow rate of oxidizer. The regression rate is observed to increase as the chamber pressure does. There also exists the effects of shape of fuel grain on thrust. Characteristic of paraffin hybrid rocket changes with shape of fuel grain. When there is a room near the injector, thrust increases. On the other hand, the room near the nozzle does not contribute to thrust increasement.

  • PDF

Design Of 2-Stage Rocket Using Hybrid Rocket Motor and Solid Rocket Motor (하이브리드로켓 모터 및 고체로켓 모터를 이용한 2단 로켓 설계)

  • Go, Su-Han;Kim, Yeong-Jin;Mun, Seong-Gyun;Byeon, Min-Uk;Yu, Ji-Seung;Kim, Ga-Ram;Kim, Min-Cheol;Park, Jong-Su;Mun, Hui-Jang;Kim, Jin-Gon
    • 한국항공운항학회:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.14-18
    • /
    • 2016
  • 본 연구에서는 하이브리드로켓 모터와 고체로켓 모터를 이용하여 목표 고도 1km인 2단 로켓 설계를 수행하였다. 비행 시나리오는 총 비행시간 51.59초, 1단부 로켓 연소시간은 3초이며 연소 종료 후 3초 뒤 단 분리를 수행하여 2단부 로켓 점화가 이루어져 총 3초간 연소가 진행된다. 1단부 모터는 하이브리드로켓으로써 5port의 HDPE를 연료 그레인으로 사용하였고 $LN_2O$를 산화제로 사용하였다. 2단부 모터는 고체로켓으로 KNSB(Sorbitol/$KNO_3$)추진제를 사용하였다. 단 분리는 영전자석을 이용하여 분리하며 2단부 모터의 점화는 광학 센서와 니크롬선 점화방식을 이용하여 점화하도록 설계하였다. 비행하는 동안 AVR를 이용해 압력, 가속도, GPS 등의 자료를 수집할 수 있도록 설계하였다.

  • PDF

Performance Study of Nozzleless Booster Casted to the High Density Solid Propellant with Zr as a Metal Fuel (고밀도 지르코늄(Zr) 금속연료 조성의 추진제를 이용한 무노즐 부스터 성능 연구)

  • Khil, Taeock;Jung, Eunhee;Lee, Kiyeon;Ryu, Taeha
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.2
    • /
    • pp.38-51
    • /
    • 2018
  • This study was carried out to improve the performance characteristics of nozzleless boosters that are used in ramjet boosters. A propellant using Zr as the metal fuel was developed, which provided a higher density than the propellant using Al as the metal fuel. The developed propellant was cast using the nozzleless booster and a ground test was carried out by varying the length-to-diameter ratio (L/D ratio) of the propellant. From a comparison between the performance characteristics of propellants using Zr and Al, it was proved that the performance of the propellant using Zr is higher than that of propellant using Al, except for the specific impulse, under all tested conditions. As the length-to-diameter ratio was increased, the specific impulse of the propellant using Zr was decreased by 88% compared with that of the propellant with Al. However, because of the density difference between the propellants, the impulse density of the propellant with Zr was higher than that of the propellant with Al under all tested conditions.

The Study of Combustion, Ignition and Safety Characteristics of HTPE Insensitive Propellant (HTPE 둔감추진제 연소/점화/안전도 특성 연구)

  • Yoo, Ji-Chang;Jung, Jung-Yong;Kim, Chang-Kee;Min, Byung-Sun;Ryu, Baek-Neung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.351-355
    • /
    • 2011
  • In this study, 2 kinds of HTPE insensitive propellants composed of HTPE/BuNENA binder, AP, AN and Al were investigated for combustion characteristics, ignition delay time, sensitivity and insensitive properties compared with HTPB propellant. HTPE propellant showed almost same sensitivity results as HTPB propellant, showed 2~3 times higher value than the value of HTPB propellant, ignition delay time respectively, and met the standard criteria, while HTPB propellant failed.

  • PDF

Review on Kerosene Fuel and Coking (케로신 연료 및 코킹에 대한 검토)

  • Lee, Junseo;Ahn, Kyubok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.3
    • /
    • pp.81-124
    • /
    • 2020
  • In liquid oxygen/kerosene liquid rocket engines, kerosene is not only a propellant but also plays a role as a coolant to protect the combustion chamber wall from 3,000 K or more combustion gas. Since kerosene is exposed to high temperature passing through cooling channels, it may undergo heat-related chemical reactions leading to precipitation of carbon-rich solids. Such kerosene's thermal and fluidic characteristic test data are essential for the regeneratively cooled combustion chamber design. In this paper, we investigated foreign studies related to regenerative cooling channel and kerosene. Starting with general information on hydrocarbon fuels including kerosene, we attempted to systematically organize sedimentary phenomena on cooling channel walls, their causes/research results, coking test equipments/prevention methods, etc.

Study on the Ignition and Burning Characteristic of Single Aluminum Particle with Thermal Radiation (열복사에 의한 단일 알루미늄 입자 점화-연소특성 측정)

  • Lim, Ji-Hwan;Yoon, Woong-Sup;Lee, Do-Hyung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.450-459
    • /
    • 2010
  • 고체추진제의 첨가제 또는 연료로써 주로 사용되는 알루미늄 단일 입자 연소시험 장비를 제작하고 연소 실험을 수행하였다. 산화 알루미늄으로 피복된 금속입자는 약 30~100 ${\mu}m$의 크기를 사용하였다. 단일 입자는 Electrodynamic Balance (EDB) 방법에 의해 공중 부양된 상태로, 중력에 의한 영향이 배제되어 금속입자 고정용 또는 측정용 장치들의 접촉에 의한 열손실을 제거시켜 실험 정확도를 높였다. Standard Hyperbolic Electrodynamic Levitator (SHEL) 내에서 부양된 입자에 $CO_2$ 레이저를 사용하여 점화시킨 후, 입자로부터 방사되는 열복사를 이용한 two wavelength pyrometry를 적용하여 알루미늄 입자 크기에 따른 연소시간, 평균 화염온도, 점화온도, 점화시간을 획득하였으며, 단일 알루미늄 입자의 점화-연소특성을 평가하였다.

  • PDF

System Design and Fundamental Experiment for Thrust Control of $GO_2$/PE Hybrid Rocket ($GO_2$/PE 하이브리드 로켓의 추력제어를 위한 시스템 설계 및 기초실험)

  • Lee, Yong-Wu;Kang, Wan-Kyu;Huh, Hwan-Il
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.1
    • /
    • pp.40-47
    • /
    • 2010
  • In this study, basic research on the thrust control by controling oxidizer mass flow rate of a $GO_2$/PE hybrid rocket is presented. For this purpose, hybrid rocket system including oxidizer flow control system and data acquisition system was developed. To control oxidizer mass flow rate, we used needle valve with stepping motor which was controled by LabVIEW program. During the fundamental experiments, this system managed to follow the pre-programmed (20 N - 10 N - 20 N - 0 N) thrust level.

Design of Gun Launched Ramjet Propelled Artillery Shell with Inviscid Flow Assumption (비점성 유동을 가정한 포 발사 램제트 추진탄 설계)

  • Kang, Shinjae;Park, Chul;Jung, Woosuk;Kwon, Taesoo;Park, Juhyeon;Kwon, Sejin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.4
    • /
    • pp.52-60
    • /
    • 2015
  • Operation area of corps was expanded under military reformation, and extending range of 155 mm howitzer became important issue. New approach is needed to extend range to 80 kim. Ramjet engine is air breathing engine, and it can provide specific impulse several times more than solid rocket motor so that range is extended using same weight of propellant. If the ramjet engine is gun-launched system, it does not require any other booster because muzzle velocity is near Mach 3. Especially solid fuel ramjet (SFRJ) does not have any moving part so that it is favorable for gun-launching system which is under high stress during launching. In this paper, we design air intake, combustion chamber, and nozzle of 155 mm gun launched ramjet propelled artillery shell with inviscid flow assumption. We conduct parameter study to have range more than 80 km, and maximum high explosive volume.

Oscillation Characteristics of Turbulent Channel Flow with Wall Blowing (채널유동에서 질량분사에 의한 표면유동의 진동 특성)

  • Na, Yang;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.1
    • /
    • pp.62-68
    • /
    • 2009
  • The interaction between wall blowing and oxidizer flow can generate a very complicated flow characteristics in combustion chamber of hybrid rockets. LES analysis was conducted with an in-house CFD code to investigate the features of turbulent flow without chemical reactions. The numerical results reveal that the flow oscillations at a certain frequency exists on the fuel surface, which is analogous to those observed in the solid propellant combustion. However, the observation of oscillating flow at a certain frequency is only limited to a very thin layer adjacent to wall surface and the strength of the oscillation is not strong enough to induce the drastic change in temperature gradient on the surface. The visualization of fluctuating pressure components shows the periodic appearance of relatively high and low pressure regions along the axial direction. This subsequently results in the oscillation of flow at a certain fixed frequency. This implies that the resonance phenomenon would be possible if the external disturbances such as acoustic excitation could be imposed to the oscillating flow in the combustion chamber.