• Title/Summary/Keyword: 고체순환

Search Result 112, Processing Time 0.018 seconds

A Study on the Fouling of Ultrafiltration Membranes Used in the Treatment of an Acidic Solution in a Circular Cross-flow Filtration Bench (순환식 막 모듈 여과장치를 이용한 산성용액의 수처리 공정 시 발생하는 한외여과막 오염에 관한 연구)

  • Kim, Nam-Joon;Choi, Chang-Min;Choi, Yong-Hun;Lee, Jun-Ho;Kim, Hwan-Jin;Park, Byung-Jae;Joo, Young-Kil;Kang, Jin-Seok;Paik, Youn-Kee
    • Membrane Journal
    • /
    • v.19 no.3
    • /
    • pp.252-260
    • /
    • 2009
  • The effects of the treatment of an acidic solution at pH 2 on polyacrylonitrile ultrafiltration (UF) membranes were investigated using a circular cross-flow filtration bench with a membrane module. A substantial reduction in the membrane permeability was observed after 80 hours' treatment of the acidic solution. In addition, the analyses of the sample solutions by ultraviolet/visible absorption spectroscopy and gas chromatography/mass spectrometry (GC/MS), which were taken from the feed tank as a function of the treatment time, showed that a new organic compound was produced in the course of the treatment. From a thorough search of the mass spectral library we presumed the new compound to be 1,6-dioxacyclododecane-7,12-dione (DCD), one of the well-known additives for polyurethane. Based on further experimental results, including the scanning electron microscope (SEM) images and the solid-state NMR spectra of the membranes used for the treatment of the acidic solution, we suggested that the decrease of the permeate flux resulted not from the deformation of the membranes, but from the fouling by DCD eluted from the polyurethane tubes in the filtration bench during the treatment. Those results imply that the reactivity to an acidic solution of the parts comprising the filtration bench is as important as that of the membranes themselves for effective treatments of acidic solutions, for efficient chemical cleaning by strong acids, and also in determining the pH limit of the solutions that can be treated by the membranes.

Petrology of Host Body of Feldspar Deposits in Jechon Ganites (장석광상 모암인 제천반상화강암의 암석학적 특성)

  • Lee, Han-Yeang;Kim, Dai-Oap;Park, Joong-Kwon
    • Journal of the Korean earth science society
    • /
    • v.22 no.5
    • /
    • pp.405-414
    • /
    • 2001
  • Jecheon granite can be divided into two types; porphyritic granite (K-feldspar megacryst bearing) and medium-grained biotite granite. Porphyritic granite, host body of feldspar deposits, is 8${\sim}$11 km in diameter and about 80 $km^{2}$ in area. It mainly contains K-feldspar, plagioclase, biotite and quartz, and magnetite, zircon, sphene and apatite are accessary minerals. Enclosed minerals in K-feldspar megacryst with 3${\sim}$10 cm in diameter are hornblende, plagioclase, quartz, magnetite, apatite, sphene and zircon. Mafic enclaves mainly consisting of hornblende, plagioclase and quartz are frequently observed in porphrytic granite. Medium-grained biotite granite consists of K-feldspar, plagioclase, biotite and hornblende as main, and hematite, muscovite, apatite and zircon as accessary minerals. Core and rim An contents of plagioclase from porphyritic granite, medium biotite granite, K-feldspar megacryst, and mafic enclave are 36 and 21, 40 and 32, 37 and 32, and 43 and 36, respectively. $X_{Fe}$ values of hornblende are 0.57 at biotite granite, 0.51 at K-feldspar mehacryst and 0.45 at mafic enclave. $X_{Fe}$ values of biotite and hornblende are homogeneous without chemical zonation. K-feldspar megacryst shows end member of pure composition with exsolved thin lamellar pure albites. Characteristics of mineral compositions and petrography indicate porphyritic granite is igneous origin and medium-grained biotite granite comes from the same source of magma; biotite granite is initiated to solidly and from residual melt porphyritic granite can be formed. Possibly K-feldspar megacrysts are formde under H$_{2}$O undersaturation condition and near K-feldspar solidus curve temperature; growth rate is faster than nucleation rate. Mafic enclaves are thought to be mingled mafic magma in felsic magma, which is formed from compositional stratigraphy. Estimated equilibrium temperature and pressure for medium-grained biotite granite are about $800^{\circ}C$ and 4.83${\sim}$5.27 Kb, respectively.

  • PDF