• Title/Summary/Keyword: 고체산화물전지

Search Result 468, Processing Time 0.025 seconds

Effect of $Ca^{2+}$ and $Co^{3+}$ cations substitution on the properties of $LaCrO_3$ for SOFC interconnect (SOFC 연결재용 $LaCrO_3$ Perovskite 구조에서 $Ca^{2+}$$Co^{3+}$치환첨가효과)

  • An, Yongtae;Choi, Byunghyun;Ji, Mijung;Kwon, Yongjin;Seo, Han;Hwang, Haejin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.136.1-136.1
    • /
    • 2010
  • 고체산화물 연료전지(SOFC)에서 사용되는 연결재의 주 기능은 각 단위 셀의 연료극과 다음 셀의 공기극을 전기적으로 연결하여, 공기와 사용연료의 분리역할을 하기위해 사용된다. SOFC용 연결재는 다른 구성요소 소재보다 높은 전기전도성, 낮은 이온전도성이 요구되며 SOFC는 고온에서 작동되기 때문에 다른 구성 소재들과 유사한 열팽창계수와 물리, 화학적인 안정성이 요구된다. 현재 연결재 제조기술은 plasma coating, sputtering, screen printing, 전사법등 다양한 연구가 진행되고 있다. 본 연구에서는 저렴한 비용으로 대량생산이 용이한 고상반응법을 적용하여 세라믹연결재를 제조하고, 그 특성을 연구하였다. 세라믹 연결재로서 선정한 합성조성은 $(La_{0.7}Ca_{0.3})(Cr_{0.9}Co_{0.1})O_3$로 SOFC 작동온도에서 높은 전기전도도를 나타낸다. LCCO 연결재를 1300, 1400 및 $1500^{\circ}C$에서 합성을 진행하였을 때 출발원료로 $CaCO_3$$CaF_2$로 대체하였을 때의 소결특성을 평가하였고, SEM과 XRD분석을 통하여 균질하고 결정성이 우수한 분말이 합성된 것을 확인하였고 DC impedance analyzer를 사용하여 전기전도도를 측정하였다. TMA를 사용하여 열팽창계수를 측정한 결과 YSZ(${\sim}10.8{\times}10^{-6}/^{\circ}C$)와 동일한 값을 나타내었다.

  • PDF

Synthesis characterization of a high conductivity LSCF cathode materials and electrochemical studies for IT-SOFC (중.저온 고체산화물 연료전지용 고전도성 공기극 소재 합성 및 전기화학적 특성 평가)

  • Kim, Hyoshin;Lee, Jongho;Kim, Ho-Sung;Lee, Yunsung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.139-139
    • /
    • 2010
  • LSM is widely used as a cathode material in SOFC, because of its high electrochemical activity, good stability and compatibility with YSZ electrolyte at high temperature. However, LSM in traditional cathode materials will not generate a satisfactory performance at intermediate temperature. In order to reduce the polarization resistance of cell with the operating temperature of SOFC system, the cathode material of LSCF is one of the most suitable electrode materials because of its high mixed ionic and electronic conductivity. In this report, cathode material, $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ powder for intermediate temperature SOFC was synthesized by Pechini method using the starting materials such as nitrate of La, Sr, Co and Fe including ethylene glycol, etc. As a result, the synthesized powder that calcined above $700^{\circ}C$ exhibits successfully perovskite structure, indicating phase-pure of LSCF. Moreover, the particle size, surface area, crystal structure and morphology of the synthesized oxide powders were characterized by SEM, XRD, and BET, etc. In order to evaluate the electrochemical performance for the synthesized powder, slury mixture using the synthesized cathode material was coated by screen-printing process on the anode-supported electrolyte which was prepared by a tape casting method and co-sintering. Finally, electrochemical studies of the SOFC unit cell, including measurements such as power density and impedance, were performed.

  • PDF

Redox Behaviors of NiO/YSZ Anode Tube in Anode-Supported Flat Tubular Solid Oxide Fuel Cells (평관형 고체 산화물 연료전지의 연료극 지지체 NiO/YSZ의 환원 및 재산화 거동 특성)

  • Song, Rak-Hyun;Lee, Gil-Yong;Shin, Dong-Ryul
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.1
    • /
    • pp.82-89
    • /
    • 2006
  • The redox behaviors of anode-supported flat tube for solid oxide fuel cell has been studied. The mass change of the extruded NiO/YSZ anode flat tube during redox cycling was examined by thermogravimetric analysis(TGA). The result of TGA was shown a rapidly mass change in the range of $455\;-\;670^{\circ}C$ and the reoxidation of the NiO/YSZ anode was almost completed at $750^{\circ}C$. The starting temperature of reoxidation and the maximum temperature of oxidation rate decreased with increasing the reoxidation cycle, which is attributed to the increased porosity caused by volume change. Bending strengths of the NiO/YSZ anode after redox cycling were 96 - 80 MPa and the bending strength decreased slightly with increasing the redox cycle. On the other hand, the bending strength of the NiO/YSZ anode with electrolyte showed 130 MPa after first redox cycling but decreased rapidly with increasing the redox cycle. From the results of the bending test and the microstructure observation, we conclude that the crack initiation of the electrolyte-coated NiO/YSZ anode was induced easily at interface of electrolyte/anode tube and propagated cross the electrolyte.

Quantitative Microstructure Analysis to Predict Electrical Property of NiO-YSZ Anode Support for SOFCs (미세조직 정량 분석을 통한 고체산화물 연료전지용 NiO-YSZ 연료극 전기전도도 예측)

  • Wahyudi, Wandi;Ahmed, Bilal;Lee, Seung-Bok;Song, Rak-Hyun;Lee, Jong-Won;Lim, Tak-Hyoung;Park, Seok-Joo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.3
    • /
    • pp.237-241
    • /
    • 2013
  • The correlation between NiO-YSZ microstructure and its electrical property used for SOFC anode was critically evaluated with image processing and direct measurement techniques. These innovative processing techniques were employed to quantify the contiguity of the anode constituent phase. The calculated contiguities were then correlated with electrical conductivity attained from 4-probe DC method. This investigation described that contiguity of nickel oxide phases of an anode has a linear relationship with its electrical conductivity. We observed that the contiguity of NiO increased from 0.18 to 0.50 then electrical conductivity attained was significantly increased from 520 S/cm to 1468 S/cm at $900^{\circ}C$.

Numerical Analysis on Performance Changes of the Tubular SOFCs according to Current Collecting Method (전류집전 방법에 따른 원통형 고체산화물 연료전지의 성능 변화 수치해석)

  • Yu, Geon;Park, Seok-Joo;Lee, Jong-Won;Lee, Seung-Bok;Lim, Tak-Hyoung;Song, Rak-Hyun;Shin, Dong-Ryul;Kim, Ho-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.2
    • /
    • pp.129-138
    • /
    • 2011
  • Performance changes of an anode-supported tubular SOFC including current collectors are analyzed at different current collecting methods using numerical simulation. From the two dimensional numerical model of the solid oxide fuel cell with nickel felts as anodic current collectors and silver wires as cathodic ones, the performance curves and the distributions of temperature, concentration, current density are obtained. Also, the voltage loss of the cell is divided into three parts: activation loss, concentration loss and ohmic loss. The results show that the performance change of the cell is dominantly influenced by the ohmic loss. Although the temperature and concentration distributions are different, the total activation loss and concentration loss are nearly same. And the ohmic loss is divided into each parts of the cell components. The ohmic loss of the anodic current collectorreaches about 60~80% of the cell's total ohmic loss. Therefore, the reduction of the ohmic loss of the anodic current collector is very important for stack power enhancement. It is also recommended that the load should be connected to the both ends of the anodic current collector.

Design and Self-sustainable Operation of 1 kW SOFC System (1kW 고체산화물 연료전지(SOFC) 시스템 설계 및 자열운전)

  • Lee, Tae-Hee;Choi, Jin-Hyeok;Park, Tae-Sung;Yoo, Young-Sung;Nam, Suk-Woo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.5
    • /
    • pp.384-389
    • /
    • 2009
  • KEPRI (Korea Electric Power Research Institute) has studied planar type solid oxide fuel cell (SOFC) stacks using anode-supported cells and kW class co-generation systems for residential power generation. In this work, a 1 kW SOFC system consisted of a hot box part, a cold BOP (balance of plant) part, and a hot water reservoir. The hot box part contained a SOFC stack made up of 48 cells, a fuel reformer, a catalytic combustor, and heat exchangers. Thermal management and insulation system were especially designed for self-sustainable operation in that system. A cold BOP part was composed of blowers, pumps, a water trap, and system control units. When the 1 kW SOFC stack was tested using hydrogen at $750^{\circ}C$, the stack power was about $1.2\;kW_e$ at 30 A and $1.6\;kW_e$ at 50 A. Turning off an electric furnace, the SOFC system was operated using hydrogen and city gas without any external heat source. Under self-sustainable operation conditions, the stack power was about $1.3\;kW_e$ with hydrogen and $1.2\;kW_e$ with city gas respectively. The system also recuperated heat of about $1.1\;kW_{th}$ by making hot water.

Effects of Cobalt Protective Coating Prepared by DC Electroplating on Ferritic Stainless Steel for SOFC Interconnect (직류 전기도금을 이용한 고체산화물 연료전지 금속연결재용 페라이트계 스테인리스 스틸의 코발트 보호막 코팅 효과)

  • Hong, Jong-Eun;Lim, Tak-Hyung;Song, Rak-Hyun;Lee, Seung-Bok;Shin, Dong-Ryul;Yoo, Young-Sung;Lee, Dok-Yol
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.2
    • /
    • pp.116-124
    • /
    • 2009
  • We investigated the influences of cobalt coating deposited by DC electroplating on the ferritic stainless steel, STS 430, as a protective layer on a metallic interconnect for SOFC applications. Cobalt coated STS 430 revealed a uniform and denser-packing oxide surface and a reduced growth rate of $Cr_2O_3$ scales after oxidation at $800^{\circ}C$in air. Cobalt coating layer was oxidized to $CoCo_2O_4$ and Co containing mixed oxide spinels such as $Co_2CrO_4$, $CoCr_2O_4$, and $CoCrFeO_4$. The area specific resistance value of Co coated sample was $0.020\;{\Omega}cm^2$ lower than that of uncoated at $800^{\circ}C$ in air during 500 h. After 1000 h oxidation, cobalt oxide coating layer suppressed chromium outward diffusion.

Performance Prediction Model of Solid Oxide Fuel Cell Stack Using Deep Neural Network Technique (심층 신경망 기법을 이용한 고체 산화물 연료전지 스택의 성능 예측 모델)

  • LEE, JAEYOON;PINEDA, ISRAEL TORRES;GIAP, VAN-TIEN;LEE, DONGKEUN;KIM, YOUNG SANG;AHN, KOOK YOUNG;LEE, YOUNG DUK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.5
    • /
    • pp.436-443
    • /
    • 2020
  • The performance prediction model of a solid oxide fuel cell stack has been developed using deep neural network technique, one of the machine learning methods. The machine learning has been received much interest in various fields, including energy system mo- deling. Using machine learning technique can save time and cost requried in developing an energy system model being compared to the conventional method, that is a combination of a mathematical modeling and an experimental validation. Results reveal that the mean average percent error, root mean square error, and coefficient of determination (R2) range 1.7515, 0.1342, 0.8597, repectively, in maximum. To improve the predictability of the model, the pre-processing is effective and interpolative machine learning and application is more accurate than the extrapolative cases.

Electrochemical Performance of the Solid Oxide Fuel Cell with Different Thicknesses of BSCF-based Cathode (BSCF계 혼합전도성 공기극의 두께에 따른 고체산화물 연료전지의 전기화학적 특성)

  • Jeong, Jaewon;Yoo, Chung-Yul;Joo, Jong Hoon;Yu, Ji Haeng
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.2
    • /
    • pp.186-192
    • /
    • 2013
  • In order to reduce the costs and to improve the durability of solid oxide fuel cell (SOFC), the operating temperature should be decreased while the power density is maintained as much as possible. However, lowering the operating temperature increases the cathode interfacial polarization resistances dramatically, limiting the performance of low-temperature SOFC at especially purely electronic conducting cathode. To improve cathode performance at low temperature, the number of reaction sites for the oxygen reduction should be increased by using a mixed ionic and electronic conducting (MIEC) material. In this study, anode-supported fuel cells with two different thicknesses of the MIEC cathode were fabricated and tested at various operating temperatures. The anode supported cell with $32.5{\mu}m$-thick BSCFZn-LSCF cathode layer showed much lower polarization resistance than that with $3.2{\mu}m$ thick cahtode and higher power density especially at low temperature. The effects of cathode layer thickness on the electrochemical performance are discussed with analysis of impedance spectra.

Prediction of Mechanical and Electrical Properties of NiO-YSZ Anode Support for SOFC from Quantitative Analysis of Its Microstructure (미세조직 정량 분석을 통한 고체산화물연료전지용 NiO-YSZ 연료극 지지체의 기계적/전기적 성능 예측)

  • WAHYUDI, WANDI;KHAN, MUHAMMAD SHIRJEEL;SONG, RAK-HYUN;LEE, JONG-WON;LIM, TAK-HYOUNG;PARK, SEOK-JOO;LEE, SEUNG-BOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.5
    • /
    • pp.521-530
    • /
    • 2017
  • Improving the microstructure of NiO/YSZ is one of several approaches used to enhance the electrical and mechanical properties of an anode support in Solid Oxide Fuel Cells (SOFCs). The aim of the work reported in this paper was to predict the relationship between these microstructural changes and the resulting properties. To this end, modification of the anode microstructure was carried out using different sizes of Poly (Methyl Methacrylate) (PMMA) beads as a pore former. The electrical conductivity and mechanical strength of these samples were measured using four-probe DC, and three-point bend-test methods, respectively. Thermal etching followed by high resolution SEM imaging was performed for sintered samples to distinguish between the three phases (NiO, YSZ, and pores). Recently developed image analysis techniques were modified and used to calculate the porosity and the contiguity of different phases of the anode support. Image analysis results were verified by comparison with the porosity values determined from mercury porosimetry measurements. Contiguity of the three phases was then compared with data from electrical and mechanical measurements. A linear relationship was obtained between the contiguity data determined from image analysis, and the electrical and mechanical properties found experimentally. Based upon these relationships we can predict the electrical and mechanical properties of SOFC support from the SEM images.