• Title/Summary/Keyword: 고주파대역 에너지

Search Result 42, Processing Time 0.021 seconds

Content-based Image Retrieval using Feature Extraction in Wavelet Transform Domain (웨이브릿 변환 영역에서 특징추출을 이용한 내용기반 영상 검색)

  • 최인호;이상훈
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.4
    • /
    • pp.415-425
    • /
    • 2002
  • In this paper, we present a content-based image retrieval method which is based on the feature extraction in the wavelet transform domain. In order to overcome the drawbacks of the feature vector making up methods which use the global wavelet coefficients in subbands, we utilize the energy value of wavelet coefficients, and the shape-based retrieval of objects is processed by moment which is invariant in translation, scaling, rotation of the objects The proposed methods reduce feature vector size, and make progress performance of classification retrieval which provides fast retrievals times. To offer the abilities of region-based image retrieval, we discussed the image segmentation method which can reduce the effect of an irregular light sources. The image segmentation method uses a region-merging, and candidate regions which are merged were selected by the energy values of high frequency bands in discrete wavelet transform. The region-based image retrieval is executed by using the segmented region information, and the images are retrieved by a color, texture, shape feature vector.

  • PDF

Analysis of Ground Vibration Characteristics by Test Blasting in Southern Region of Jeju (제주 남부지역의 시험발파에 의한 지반진동 특성 분석)

  • Kim, Seung Hyun;Lee, Dong Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.3
    • /
    • pp.419-429
    • /
    • 2019
  • The characteristics of ground vibration have been analyzed by test blasting in southern region of Jeju (layered ground consisting of basalt and clinker). By grasping the principal component of ground vibration and depriving the prediction equations of ground vibration, the propagation characteristics of ground vibration have been compared to the domestic design guidelines. Ground vibration in layered ground has a small amplitude at a short distance. However, it has been confirmed that the vibration energy is transmitted further by virtue of the low attenuation of the ground vibration as it goes to a longer distance. Moreover, the frequency has been confirmed to be low frequency band. The outcome has been defined that it resulted because the clinker layer with a large pore transforms the blasting energy seismic wave with high frequency into a low frequency wave having a long waveform period. In addition, the limits of design guidelines were identified by comparing the ground vibration of Jeju and other bedrock areas. Thus, the necessity of the development of the prediction equations of ground vibration utilized in design that reflect the characteristics of the area has been suggested.

Guidedwave-induced rockbolt integrity using Fourier and wavelet transforms (유도파에 대한 푸리에 및 웨이브렛 변환을 이용한 록볼트의 건전도 평가)

  • Lee, In-Mo;Kim, Hyun-Jin;Han, Shin-In;Lee, Jong-Sub
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.4
    • /
    • pp.403-413
    • /
    • 2007
  • As rock bolts become one of the main support systems in tunnels and underground structures, the integrity of the rock bolts affects the safety of these types of structures. The purpose of this study is the evaluation of rock bolt integrity using Fourier and wavelet transforms of the guided ultrasonic waves. After five rock bolt specimens with various defect ratios are embedded into a large scale concrete block, guided waves are generated by a PZT (lead zirconate titanate) element and measured by an acoustic emission (AE) sensor. The captured signals are analyzed in the frequency domain using the Fourier transform, and in the time-frequency domain using the wavelet transform based on a Gabor wavelet. The spectrum obtained from the Fourier transform shows that a portion of high frequency contents increases with increase in the defect ratio. Peak values in the time-frequency domain represent the interval of travel time of each echo. The energy velocities of the guided waves increase with the defect ratio. This study shows that the spectrum ratio and the energy velocity may be indicators fur the evaluation of rock bolt integrity.

  • PDF

Monitoring Technique using Acoustic Emission and Microseismic Event (AE와 MS 이벤트를 이용한 계측기술)

  • Cheon, Dae-Sung;Jung, Yong-Bok;Park, Chul-Whan;Synn, Joong-Ho;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2008
  • Acoustic emission (AE) and Microseimsic (MS) activities are law-energy seismic events associated with a sudden inelastic deformation such as the sudden movement of existing fractures, the generation of new fractures or the propagation of fractures. These events rapidly increase before major failure and happen within a given rock volume and radiate detectable seismic waves. The main difference between AE and MS signals is that the seismic motion frequencies of AE signals are higher than those of MS signals. As the failure of geotechnical structures usually happens as a high velocity and small displacement, it is nat easy ta determine the precursor and initiation stress level of failure in displacement detection method. To overcame this problem, AE/MS techniques far detection of structure failure and damage have recently adapt in civil engineering. This study deal with the basic theory of AE/MS and state of arts in monitoring technique using AE/MS.

Comparison of Signal Powers Generated with Metal Hammer Plate and Plastic Hammer Plate (금속 및 플라스틱 재질의 해머 타격판에 의해 발생된 신호의 파워 비교)

  • Kim, Jin-Hoo;Lee, Young-Hyun
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.4
    • /
    • pp.282-288
    • /
    • 2011
  • One of the most challenging issues facing shallow seismic survey is how to generate large amplitude of high frequency signal with small seismic sources. We tested the performance of the most commonly used shallow seismic source, hammer, with four plates: PE, nylon, aluminum, and steel plates. We compared their signal powers in terms of impulsive forces, accelerations, and ground vibration velocities caused by hammer impacts. According to a previous work, hammer blowing to an aluminum plate would generate the largest amplitude among four combinations. However, it was found in this experimental research that aluminum plate delivers seismic wave energy to the ground less than that generated with steel or PE plate. Even though the amplitude is relatively small, plastic plates could provide seismic pulses of 180 ~ 200 Hz in the bandwidth, and it seems to be very hard to generate seismic energy over the frequency of 250 Hz.

Development of a Surge Protective Device for Computer Network to International Standards (국제규격 대응 컴퓨터 네트워크용 서지방호장치 개발)

  • Park Dae-won;Song Jae-yong;Han Joo-sup;Kil Gyung-suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.6
    • /
    • pp.1253-1259
    • /
    • 2005
  • This paper dealt with the development of surge protection devices (SPDs) that can protect high speed computer network devices from overvoltages caused by switching operations or lightning surges. The designed SPD is a form of hybrid circuit which is composed of a gas tube having large current diverting capability, high response bi-directional avalanche diodes, and fast recovery diodes to reduce insertion loss on high frequency domain. Surge protection and signal transmission characteristics of the fabricated SPD was tested according to the international standards, IEC 61000-4-5 and IEC 61643-21. From the test results, the SPD is satisfied with the international standards and the high cut-off frequency was 204 MHz. Also, the SPD showed a good performance without an insertion loss on a field test of 100 Mbps class Local Area Network.

Experiments of an acoustic cooling and fabrication of a 40 kHz waveguide (음향 냉각 실험 및 40 kHz 급 웨이브가이드 제작)

  • Hyunse Kim;Euisu Lim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.5
    • /
    • pp.511-516
    • /
    • 2024
  • Recently, refrigerants such as freon gases of conventional refrigerators and air conditioners are regarded as causes of air pollutions and global warming. Thus, a new cooling technology needs to be developed and wave cooling systems are being developed, which use acoustic energies. In this article, for the development of a wave cooling system, acoustic cooling devices, which uses a low frequencies of 385 Hz and 1,150 Hz, were fabricated and experiments were performed. Using these results, a high frequency waveguide, which can be substituted for speakers, was designed using finite element methods and fabricated. As a result, the analysis result of the peak impedance value was 35.5 kHz, which agreed well with the measured value of 37.5 kHz with 5.3 % error.

Effective PPG Signal Processing Method for Detecting Emotional Stimulus (감성 자극 판단을 위한 효과적인 PPG 신호 처리 방법)

  • Oh, Dong-Gi;Min, Byung-Seok;Kwon, Sung-Oh;Kim, Hyun-Joong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.5C
    • /
    • pp.393-402
    • /
    • 2012
  • In this study, we propose a signal processing algorithm to measure the arousal level of a human subject using a PPG(Photoplethysmography) sensor. From the measured PPG signals, the arousal level is determined by PPI(Pulse to Pulse Interval) and discrete-time signal processing. We ran psychophysical experiments displaying visual stimuli on TV display while measuring PPG signal from a finger, where the nature landscape scenes were used for restorative effect, and the urban environments were used to stimulate the stress. However, the measured PPG signals may include noise due to subject movement and measurement error, which results in incorrect detections. In this paper, to mitigate the noise impact on stimulus detection, we propose a detecting algorithm using digital signal processing methods and statistics of measured signals. A filter is adopted to remove a high frequency noise and adaptively designed taking into account the statistics of the measured PPG signals. Moreover we employ a hysteresis method to reduce the distortion of PPI in decision of emotional. Via experiment, we show that the proposed scheme reduces signal noise and improves stimulus detection.

Design of High-Speed Multi-Layer PCB for Ultra High Definition Video Signals (UHD급 영상구현을 위한 다층인쇄회로기판의 특성 임피던스 분석에 관한 연구)

  • Jin, Jong-Ho;Son, Hui-Bae;Rhee, Young-Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.7
    • /
    • pp.1639-1645
    • /
    • 2015
  • In UHD high-speed video transmission system, when a signal within certain frequency region coincides electrically and structurally, the system becomes unstable because the energy is concentrated, and signal flux is interfered and distorted. For the instability, power integrity analysis should be conducted. To remove the signal distortion for MLB, using a high-frequency design technique for EMI phenomenon, EMI which radiates electromagnetic energy fluxed into power layer was analyzed considering system stabilization. In this paper, we proposed an adaptive MLB design method which minimizes high-frequency noise in MLB structure, enhances signal integrity and power integrity, and suppresses EMI. The characteristic impedance for multi-layer circuit board proposed in this study were High-Speed Video Differential Signaling(HSVDS) line width w = 0.203, line gap d = 0.203, beta layer height h = 0.145, line thickness t = 0.0175, dielectric constant εr = 4.3, and characteristic impedance Zdiff = 100.186Ω. When high-speed video differential signal interface board was tested with optimized parameters, the magnitude of Eye diagram output was 672mV, jittering was 6.593ps, transmission frequency was 1.322GHz, signal to noise was 29.62dB showing transmission quality improvement of 10dB compared to previous system.

A Study on Skin Status with Acoustic Measurements of Skin Friction Noise (피부 마찰 소음 측정을 통한 피부 상태 연구)

  • Chang, Yun Hee;Seo, Dae Hoon;Koh, A Rum;Kim, Sun Young;Lim, Jun Man;Han, Jong Seup;Lee, Sang Hwa;Park, Sun Gyoo;Kim, Yang Han
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.2
    • /
    • pp.103-109
    • /
    • 2016
  • Efficacy of cosmetics has been mainly evaluated by qualitative and quantitative methods based on visual sense, tactile sense and skin structure until now. In this study, we suggested a novel evaluation method for skin status based on sound; measuring and analyzing the rubbing noise generated by applying cosmetics. First, the rubbing noise was measured at a close range by a high-sensitivity microphone in anechoic environment, and the noises were analyzed by 1/3 octave band analysis in frequency-domain. Three conditions, 1) before washing, 2) after washing and 3) after application of cosmetics, were compared. As a result, sound pressure level (SPL) of rubbing noise after washing was larger than that of before washing, and the SPL of rubbing noise after cosmetic application was the smallest. Furthermore, the energy of rubbing noise after application was higher than that of the before and after washing conditions in a low frequency band (lower than 2 kHz region). Conversely, the energy of rubbing noise after application was much lower than the others in a high-frequency band (upper than 2 kHz region). This change of energy distribution was described as a balloon-skin model. High SPL in the low frequency region after the cosmetic applications was due to the increase of "flexibility index", while SPL in the high frequency region significantly decreased because of the attenuation which is related to "softness index". Therefore, we developed two indices based on the spectrum-energy difference for evaluating skin conditions. This proposed method and indices were verified via skin flexibility and roughness measurement using cutometer and primos respectively. These results suggest that acoustic measurement of skin friction noise may be a new skin status evaluation method.