• Title/Summary/Keyword: 고정밀 수치기법

Search Result 17, Processing Time 0.029 seconds

3-D Gravity Terrain Inversion for High Resolution Gravity Survey (고정밀 중력 탐사를 위한 3차원 중력 지형 역산 기법)

  • Park, Gye-Soon;Lee, Heui-Soon;Kwon, Byung-Doo
    • Journal of the Korean earth science society
    • /
    • v.26 no.7
    • /
    • pp.691-697
    • /
    • 2005
  • Recently, the development of accurate gravity-meter and GPS make it possible to obtain high resolution gravity data. Though gravity data interpretation like modeling and inversion has significantly improved, gravity data processing itself has improved very little. Conventional gravity data processing removes gravity effects due to mass and height difference between base and measurement level. But, it would be a biased density model when some or whole part of anomalous bodies exist above the base level. We attempted to make a multiquadric surface of the survey area from topography with DEM (Digital Elevation Map) data. Then we constituted rectangular blocks which reflect real topography of the survey area by the multiquadric surface. Thus, we were able to carry out 3-D inversions which include information of topography. We named this technique, 3-D Gravity Terrain Inversion (3DGTI). The model test showed that the inversion model from 3DGTI made better results than conventional methods. Furthermore, the 3-dimensional model from the 3DGTI method could maintain topography and as a result, it showed more realistic geologic model. This method was also applied on real field data in Masan-Changwon area. Granitic intrusion is an important geologic characteristic in this area. This method showed more critical geological boundaries than other conventional methods. Therefore, we concluded that in the case of various rocks and rugged terrain, this new method will make better model than convention ones.

A Study on High-Precision DEM Generation Using ERS-Envisat SAR Cross-Interferometry (ERS-Envisat SAR Cross-Interferomety를 이용한 고정밀 DEM 생성에 관한 연구)

  • Lee, Won-Jin;Jung, Hyung-Sup;Lu, Zhong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.4
    • /
    • pp.431-439
    • /
    • 2010
  • Cross-interferometic synthetic aperture radar (CInSAR) technique from ERS-2 and Envisat images is capable of generating submeter-accuracy digital elevation model (DEM). However, it is very difficult to produce high-quality CInSAR-derived DEM due to the difference in the azimuth and range pixel size between ERS-2 and Envisat images as well as the small height ambiguity of CInSAR interferogram. In this study, we have proposed an efficient method to overcome the problems, produced a high-quality DEM over northern Alaska, and compared the CInSAR-derived DEM with the national elevation dataset (NED) DEM from U.S. Geological Survey. In the proposed method, azimuth common band filtering is applied in the radar raw data processing to mitigate the mis-registation due to the difference in the azimuth and range pixel size, and differential SAR interferogram (DInSAR) is used for reducing the unwrapping error occurred by the high fringe rate of CInSAR interferogram. Using the CInSAR DEM, we have identified and corrected man-made artifacts in the NED DEM. The wave number analysis further confirms that the CInSAR DEM has valid Signal in the high frequency of more than 0.08 radians/m (about 40m) while the NED DEM does not. Our results indicate that the CInSAR DEM is superior to the NED DEM in terms of both height precision and ground resolution.

Investigation on relative contribution of flow noise sources of ship propulsion system (선박 추진시스템 유동 소음원 상대적 기여도 분석)

  • Ha, Junbeom;Ku, Garam;Cheong, Cheolung;Seol, Hanshin;Jeong, Hongseok;Jung, Minseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.3
    • /
    • pp.268-277
    • /
    • 2022
  • In this study, each component of flow noise source of underwater propeller installed to the scale model of the KVLCC2 is investigated and the effect of each noise source on underwater-radiated noise is quantitatively analyzed. The computation domain is set to be the same as the test section of the large cavitation tunnel in the Korea Research Institute of Ship and Ocean Engineering. First, for the high-resolution computation of flow field which is noise source region, the incompressible multiphase Delayed Detached Eddy Simulation is performed. Based on flow simulation results, the Ffowcs Williams and Hawkings integral equation is used to predict underwater-radiated noise and its validity is confirmed through the comparison with the tunnel experiment result. For the quantitative comparison on the contribution of each noise source, the spectral levels of sound pressure and power levels predicted using propeller tip-vortex cavitation, blade surface and rudder surface as the integral region of noise sources are investigated. It is confirmed that the cavitation which is monopole noise source significantly contributed to the underwater-radiated noise than propeller blades and rudder which is dipole noise source, and the rudder have more contribution than propeller blades due to the influence of the propeller wake.

An Automated OpenGIS-based Tool Development for Flood Inundation Mapping and its Applications in Jeju Hancheon (OpenGIS 기반 홍수범람지도 작성 자동화 툴 개발 및 제주 한천 적용 연구)

  • Kim, Kyungdong;Kim, Taeeun;Kim, Dongsu;Yang, Sungkee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.691-702
    • /
    • 2019
  • Flood inundation map has various important roles in terms of municipal planning, timely dam operation, economic levee design, and building flood forecasting systems. Considering that the riparian areas adjacent to national rivers with high potential flood vulnerability conventionally imposed special cares to justify applications of recently available two- or three-dimensional flood inundation numerical models on top of digital elevation models of dense spatial resolution such as LiDAR irrespective of their high costs. On the contrary, local streams usually could not have benefits from recent technological advances, instead they inevitably have relied upon time-consuming manual drawings or have accepted DEMs with poor resolutions or inaccurate 1D numerical models for producing inundation maps due mainly to limited budgets and suitable techniques. In order to efficiently and cost-effectively provide a series of flood inundation maps dedicatedly for the local streams, this study proposed an OpenGIS-based flood mapping tool named Open Flood Mapper (OFM). The spatial accuracy of flood inundation map derived from the OFM was validated throughout comparison with an inundation trace map acquired after typhoon Nari in Hancheon basin located in Jeju Island. Also, a series of inundation maps from the OFM were comprehensively investigated to track the burst of flood in the extreme flood events.

Automation of Building Extraction and Modeling Using Airborne LiDAR Data (항공 라이다 데이터를 이용한 건물 모델링의 자동화)

  • Lim, Sae-Bom;Kim, Jung-Hyun;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.5
    • /
    • pp.619-628
    • /
    • 2009
  • LiDAR has capability of rapid data acquisition and provides useful information for reconstructing surface of the Earth. However, Extracting information from LiDAR data is not easy task because LiDAR data consist of irregularly distributed point clouds of 3D coordinates and lack of semantic and visual information. This thesis proposed methods for automatic extraction of buildings and 3D detail modeling using airborne LiDAR data. As for preprocessing, noise and unnecessary data were removed by iterative surface fitting and then classification of ground and non-ground data was performed by analyzing histogram. Footprints of the buildings were extracted by tracing points on the building boundaries. The refined footprints were obtained by regularization based on the building hypothesis. The accuracy of building footprints were evaluated by comparing with 1:1,000 digital vector maps. The horizontal RMSE was 0.56m for test areas. Finally, a method of 3D modeling of roof superstructure was developed. Statistical and geometric information of the LiDAR data on building roof were analyzed to segment data and to determine roof shape. The superstructures on the roof were modeled by 3D analytical functions that were derived by least square method. The accuracy of the 3D modeling was estimated using simulation data. The RMSEs were 0.91m, 1.43m, 1.85m and 1.97m for flat, sloped, arch and dome shapes, respectively. The methods developed in study show that the automation of 3D building modeling process was effectively performed.

Airloads and Structural Loads Analysis of LCH Rotor Using a Loose CFD/CSD Coupling (유체-구조 연계해석을 통한 소형민수헬기(LCH) 공력 및 구조하중 해석)

  • Lee, Da-Woon;Kim, Kiro;Yee, Kwan-Jung;Jung, Sung-Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.7
    • /
    • pp.489-498
    • /
    • 2019
  • The airloads and structural loads of Light Civil Helicopter (LCH) rotor are investigated using a loose CFD/CSD coupling. The structural dynamics model for LCH 5-bladed rotor cwith elastomeric bearing and inter-bladed damper is constructed using CAMRAD-II. Either isolated rotor or rotor-fuselage model is used to identify the effect of the fuselage on the aeromechanics behavior at a cruise speed of 0.28. The fuselage effect is shown to be marginal on the aeromechanics predictions of LCH rotor, though the effect can be non-negligible for the tail structure due to the prevailing root vortices strengthened by the fuselage upwash. A lifting-line based comprehensive analysis is also conducted to verify the CFD/CSD coupled analysis. The comparison study shows that the comprehensive analysis predictions are generally in good agreements with CFD/CSD coupled results. However, the predicted comprehensive analysis results underestimate peak-to-peak values of blade section airloads and elastic motions due to the limitation of unsteady aerodynamic predictions. Particularly, significant discrepancies appear in the structural loads with apparent phase differences.

An Electrical Conductivity Reconstruction for Evaluating Bone Mineral Density : Simulation (골 밀도 평가를 위한 뼈의 전기 전도도 재구성: 시뮬레이션)

  • 최민주;김민찬;강관석;최흥호
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.261-268
    • /
    • 2004
  • Osteoporosis is a clinical condition in which the amount of bone tissue is reduced and the likelihood of fracture is increased. It is known that the electrical property of the bone is related to its density, and, in particular, the electrical resistance of the bone decreases as the bone loss increases. This implies that the electrical property of bone may be an useful parameter to diagnose osteoporosis, provided that it can be readily measured. The study attempted to evaluate the electrical conductivity of bone using a technique of electrical impedance tomography (EIT). It nay not be easy in general to get an EIT for the bone due to the big difference (an order of 2) of electrical properties between the bone and the surrounding soft tissue. In the present study, we took an adaptive mesh regeneration technique originally developed for the detection of two phase boundaries and modified it to be able to reconstruct the electrical conductivity inside the boundary provided that the geometry of the boundary was given. Numerical simulation was carried out for a tibia phantom, circular cylindrical phantom (radius of 40 mm) inside of which there is an ellipsoidal homeogenous tibia bone (short and long radius are 17 mm and 15 mm, respectively) surrounded by the soft tissue. The bone was located in the 15 mm above from the center of the circular cross section of the phantom. The electrical conductivity of the soft tissue was set to be 4 mS/cm and varies from 0.01 to 1 ms/cm for the bone. The simulation considered measurement errors in order to look into its effects. The simulated results showed that, if the measurement error was maintained less than 5 %, the reconstructed electrical conductivity of the bone was within 10 % errors. The accuracy increased with the electrical conductivity of the bone, as expected. This indicates that the present technique provides more accurate information for osteoporotic bones. It should be noted that tile simulation is based on a simple two phase image for the bone and the surrounding soft tissue when its anatomical information is provided. Nevertheless, the study indicates the possibility that the EIT technique may be used as a new means to detect the bone loss leading to osteoporotic fractures.