• 제목/요약/키워드: 고점도 전도성 잉크

검색결과 2건 처리시간 0.021초

고점도 전도성 잉크 패터닝 기술을 이용한 고성능 미세전극 패턴 구현 (Implementation of High Performance Micro Electrode Pattern Using High Viscosity Conductive Ink Patterning Technique)

  • 고정범;김형찬;당현우;양영진;최경현;도양회
    • 한국정밀공학회지
    • /
    • 제31권1호
    • /
    • pp.83-90
    • /
    • 2014
  • EHD (electro-hydro-dynamics) patterning was performed under atmospheric pressure at room temperature in a single step. The drop diameter smaller than nozzle diameter and applied high viscosity conductive ink in EHD patterning method provide a clear advantage over the piezo and thermal inkjet printing techniques. The micro electrode pattern was printed by continuous EHD patterning method using 3-type control parameters (input voltage, patterning speed, nozzle pressure). High viscosity (1000cps) conductive ink with 75wt% of silver nanoparticles was used. EHD cone type nozzle having an internal diameter of $50{\mu}m$ was used for experimentation. EHD jetting mode by input voltage and applied 1st order linear regression in stable jet mode was analyzed. The stable jet was achieved at the amplitude of 1.4~1.8 kV. $10{\mu}m$ micro electrode pattern was created at optimized parameters (input voltage 1.6kV, patterning speed 25mm/sec and nozzle pressure -2.3kPa).

미세전극 패터닝 기술을 이용한 바이오센서 패턴 구현 (Implementation of Biosensor Pattern Using Micro Patterning Technique)

  • 고정범;김형찬;양영진;김현범;양성욱;오승호;도양회;최경현
    • 한국기계가공학회지
    • /
    • 제15권6호
    • /
    • pp.122-128
    • /
    • 2016
  • The Biosensor biosensor pattern was developed by via an EHD (electro-hydro-dynamics (EHD) patterning process that was performed under atmospheric pressure at room temperature in a single step. The drop diameter was smaller than nozzle diameter and applied high viscosity conductive ink was applied in the EHD patterning method to provide a clear advantage over the piezo and thermal inkjet printing techniques. The Biosensor's biosensor's micro electrode pattern was printed by via a continuous EHD patterning method using 3three- type types of control parameters parameter (input voltage, patterning speed, nozzle pressure). High viscosity (1000 cps) conductive ink with 75 wt% of silver nanoparticles was used for experimentation. The incremental result of impedance of biosensor impedance was measured between the antibody ($10ug{\mu}g/ml$) to spore (0.1 ng/ml, 10 ng/ml, and $1ug{\mu}g./ml$) reaction at frequency 493 MHz frequency.