• Title/Summary/Keyword: 고전압 축전기

Search Result 6, Processing Time 0.022 seconds

액체 속에서의 고전압 펄스 플라즈마 발생 및 분광학적 플라즈마 특성연구

  • Park, Ji-Hun;Kim, Yong-Hui;Jeon, Su-Nam;Park, Bong-Sang;Choe, Eun-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.549-549
    • /
    • 2013
  • 고전압 펄스 플라즈마를 액체 속에서 발생시켜 수소 스펙트럼의 광학적 특성을 연구하였다. 고전압 펄스 발생 장치인 막스 제네레이터는 용량이 $0.5{\mu}F$인 축전기 5개로 이루어져 있다. 각각의 축전기는 전원 장치를 이용하여 저항을 통해 병렬로 충전되며, 방전 시에는 불꽃 방전 스위치에 의해 동시에 직렬로 연결되어 고전압을 발생시킨다. 따라서, 출력 전압과 전류는 40kV, 3 kA이며 총 에너지는 약 125 J이다. 직육면체 모양의 폴리카보네이트 용기 내부의 양쪽면에는 탐침 모양의 전극이 구성되어 있으며 전극 사이에서 고전압을 가진 플라즈마가 형성된다. 실험에서 액체로는 증류수를 사용하였다. 액체 방전 시 발생하는 수소 스펙트럼을 관측하기 위해 초점거리 30 cm의 monochromator를 이용하였고, 수소 알파선의 656.3 nm와 수소 베타선의 434.1 nm를 관측하였다. 전자 밀도의 측정법으로는 Stark broadening법을 이용하여 측정하였으며, 전자 온도는 Stark profile의 상대적인 전자 밀도의 비를 이용하여 계산하였다. 전자밀도는 실험조건에서 약 $3{\times}10^{15}cm^{-3}$, 전자온도는 약 2.5 eV가 측정되었다.

  • PDF

High-Voltage Pulse Generation by Using Flux Compression Generator and Fuse Opening Switch (자속압축발전기와 퓨즈개방스위치를 이용한 고전압펄스 발생)

  • Kuk, Jeong-Hyeon;Kim, Jin-Gi;Lee, Eun-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1463-1464
    • /
    • 2006
  • 이 논문에서는 코일의 구조가 변압기형태인 나선형 자속압축 발전기, 켄칭매질인 $SiO_2$ 분말과 동선으로 제작한 퓨즈개방스위치, 두 개의 전극으로 간단하게 만든 스파크 갭 스위치 그리고 수저항 모의부하로 이루어진 대전류 고전압 펄스발생 시스템을 제작하고 출력특성을 분석하였다. 실험결과, 축전기로부터 공급한 364J의 초기에너지를 나선형 자속압축발전기로 증폭을 하고 최대 출력전류에서 퓨즈개방스위치가 동작하여 $120{\Omega}$의 수저항에 펄스상승시간이 56ns이고, 펄스폭이 $0.1{\mu}s$인 180kV의 고전압펄스를 인가하였다.

  • PDF

Feasibility Study for the Cleaning of Well Screens using High-voltage Pulsed Discharge (고전압 펄스 방전을 이용한 지하수 관정 스크린 공막힘 재생법 연구)

  • Chung, Kyoung-Jae;Lee, Seok-Geun;Dang, Jeong-Jeung;Choi, Gil-Hwan;Hwang, Y.S.;Kim, Chul-Young;Park, Young-Jun
    • The Journal of Engineering Geology
    • /
    • v.23 no.1
    • /
    • pp.29-36
    • /
    • 2013
  • The application of appropriate rehabilitation methods can improve the efficiency of clogged wells and extend their life. In this paper, we study the feasibility of well cleaning using high-voltage pulsed discharge, in which electrical energy is used to produce impulsive pressure in water, in contrast to conventional methods that employ chemical or pneumatic energy sources. This technique utilizes the compressive shock wave generated by the expansive force of hot, dense plasma that is produced during a pulsed discharge in the gap between electrodes immersed in water. Compared with conventional techniques, this method is simple, and easy to handle and control. Using a capacitive pulsed power system with an electrical energy of 200 J, an impulsive pressure of 10.7 MPa is achieved at the position 6 cm away from the discharge gap. The amplitude of the impulsive pressure was easily controlled by adjusting the charging voltage of the capacitor and was almost linearly proportional to peak discharge current. The technique achieved good results in cleaning feasibility tests with mock-up specimens similar to clogged well screens.

Temperature Distributions of Inner Microwave for Various Working Conditions (구동조건에 따른 전자레인지 내부 온도 분포)

  • Choi, Yoon-Hwan;Kim, Dong-Kyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.792-797
    • /
    • 2010
  • Microwave oven and household cooker are devices of high voltage producer and high voltage storage batteries respectively for formation of necessary high frequencies at drive. These devices emit much heat energy because they are run at high voltages. Therefore, emitted heat energy becomes a factor that raises temperature of microwave ovens' main frame. In this research, the analysis shows the temperature distribution in microwave oven with the cooling fan drive conditions and the heat energy occurrence conditions. According to the analysis, as the speed of air outpoured in cooling fan increases, and the internal temperature decreases quantitatively. Also the inside temperature distribution was investigated by controlling heat energy emission.

Control of scale formation using high voltage impulse (고전압 임펄스에 의한 스케일 제어)

  • Yang, Seon-Hee;Chang, In-Soung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.2301-2307
    • /
    • 2015
  • The aim of this study was to evaluate the feasibility of application of the high voltage impulse (HVI) technique to the control of scale formation by calcium carbonate, which is pointed out as an important issue in industrial water treatment. The HVI system consisted of the power supply, high voltage generator, capacitors, switch and impulse generator was designed and made in laboratory scale, which can make 17kV impulse. HVI was introduced to the reactor that was filled with synthetic water containing $Ca^{2+}$ion. The concentration of calcium ion decreased only 3.0% after 5 minutes of contact time. However, it decreased up to 13.7% after 60 minutes of HVI contact time. Temperature and pH increased but conductivity decreased due to precipitation of the calcium carbonate. Although the decrease in concentration of calcium ion was not sufficient, it was verified that the HVI technique could be applicable for the softening and desalting processes.

Improvement of Fluid Penetration Efficiency in Soil Using Plasma Blasting (플라즈마 발파를 이용한 토양 내 유체의 침투 효율 개선)

  • Baek, In-Joon;Jang, Hyun-Shic;Song, Jae-Yong;Lee, Geun-Chun;Jang, Bo-An
    • The Journal of Engineering Geology
    • /
    • v.31 no.3
    • /
    • pp.433-445
    • /
    • 2021
  • Plasma blasting by high voltage arc discharge were performed in laboratory-scale soil samples to investigate the fluid penetration efficiency. A plasma blasting device with a large-capacity capacitor and columnar soil samples with a diameter of 80 cm and a height of 60 cm were prepared. Columnar soil samples consist of seven A-samples mixed with sand and silt by ratio of 7:3 and three B-samples by ratio of 9:1. When fluid was injected into A-sample by pressure without plasma blasting, fluid penetrated into soil only near around the borehole, and penetration area ratio was less than 5%. Fluid was injected by plasma blasting with three different discharge energies of 1 kJ, 4 kJ and 9 kJ. When plasma blasting was performed once in the A-samples, penetration area ratios of the fluid were 16-25%. Penetration area ratios were 30-48% when blastings were executed five times consecutively. The largest penetration area by plasma blasting was 9.6 times larger than that by fluid injection by pressure. This indicates that the higher discharge energy of plasma blasting and the more numbers of blasting are, the larger are fluid penetration areas. When five consecutive plasma blasting were carried out in B-sample, fluid penetration area ratios were 33-59%. Penetration areas into B-samples were 1.1-1.4 times larger than those in A-samples when test conditions were the same, indicating that the higher permeability of soil is, the larger is fluid penetration area. The fluid penetration radius was calculated to figure out fluid penetration volume. When the fluid was injected by pressure, the penetration radius was 9 cm. Whereas, the penetration radius was 27-30 cm when blasting were performed 5 times with energy of 9 kJ. The radius increased up to 333% by plasma blasting. All these results indicate that cleaning agent penetrates further and remediation efficiency of contaminated soil will be improved if plasma blasting technology is applied to in situ cleaning of contaminated soil with low permeability.