본 논문은 열차제어시스템의 고장률을 정량적으로 예측하고 입증하기 위한 방안을 제시한다. 고장률의 정량적 예측은 시스템 개발단계에서 하부시스템별 고장발생확률을 예측하여 목표 고장률과 비교하고, 고장률이 높은 하부시스템의 설계를 보완하기 위함이다. 시제품이 완성된 후에는 예측된 고장률의 입증을 위해 시운전을 통한 고장데이터를 분석하거나 신뢰성시험을 통해 고장률의 예측치를 입증한다. 본 논문에서 제시하는 열차제어시스템 고장률예측과 입증은 철도신호시스템 신뢰성, 가용성, 유지보수성, 안전성관련 규격인 IEC62278의 시스템 수명주기별 신뢰성활동을 근거로 하며, 전자부품으로 구성된 시스템고장률예측은 미국방부 전자부품 고장률예측 지침인 MIL-HDBK-217을 기준으로 사용하였다.
Gang, Gil-Sun;Lee, Seung-Yeon;Im, Yu-Cheol;Lee, Jong-Hyo;Yu, Jun
Proceedings of the KIEE Conference
/
2003.11b
/
pp.283-286
/
2003
본 연구는 기존의 고장진단 기법들을 토대로 주어진 자동화 시스템에 실제 적용이 가능한 고장예측 알고리즘을 제시한다. 고장예측은 시스템이 운용되는 도중에 제한된 정보와 컴퓨터 자원을 이용하여 수행되어야 하므로 실시간 적용을 위하여 2단계로 구분하여 수행된다. 첫 번째는 실시간 고장예측 단계로서 시스템 운용 중에 시스템의 고장 징후를 탐지하는 역할을 하며, 두 번째는 오프라인 고장예측 단계로서 실시간으로 고장 징후가 탐지되면 시스템의 작동을 멈춘 후 고장의 징후를 분류하고 식별하는 역할을 수행한다 원활한 고장예측 알고리즘을 도출하기 위해 자동화 시스템의 이산사건 모델과 연속시간 모델을 수립하였으며, 이들을 통합한 공정모델에 대하여 하이브리드 시뮬레이션 환경을 구축하였다. 제안된 기법은 자동화 시스템의 공정모델에 기구부, 모터부에 대한 고장모델을 부가하여 컴퓨터 시뮬레이션을 통하여 타당성을 검증하였다.
본 고에서는 TDX-1A 시스팀의 고장데이타를 신뢰도 측면에서 분석하여 운용중 발생하는 부품의 평가고장률을 도출하였다. 또한 도출된 평가고장률을 MIL-HDBK-217방법에 의해 구한 예측고장률과 비교 분석함으로써, TDX-1A 시스팀 신뢰도 예측시 적용했던 MIL-HDBK-217 예측방법이 실제 운용데이터보다 높게 나타나고 있음을 제시하였다. IC 부품에 대해 외국의 부품고장률 계산식을 살펴보고, 그에 따른 고장률 계산결과를 살펴봄으로써, 운용데이터를 이용한 운용환경에 적합한 부품고장률 예측식의 설정 연구가 필요함을 아울러 제시하였다.
부품 고장률은 시스템 신뢰도를 계산하는데 기본이 되는 요인이다. 신뢰도 예측은 부품고장률에서 회로팩, 블록, 서브시스템 및 시스템 신뢰도 순으로 계산되는 Bottom-up 방식으로 수행되기 때문이다. 본 고에서는 부품 고장률 계산시 일반적으로 사용되고 있는 미 국방부 전자부품 신뢰도 예측방법인 MIL-HDBK-217를 이용한 Microcircuit의 부품 고장률 계산방법을 나타냈다. 또한 Microcircuit의 신뢰도를 MIL-HDBK-217 예측방법 및 예측결과와 외국 예측방법 및 예측결과로 비교하여 나타냈다.
Proceedings of the Safety Management and Science Conference
/
2000.11a
/
pp.31-37
/
2000
지금까지 고장예측에 관한 연구 논문들은 여러 분야에서 많이 다루어져 왔다. 그 대표적인 예측 방법 중에 하나인 FTA(Fault Tree Analysis)가 가장 많이 사용되어져 왔으며, 여러 산업분야에서 가장 활발하게 시스템 및 부품에 대한 고장 가능성 진단을 실시하여 왔다. 하지만 기존의 전통적인 FTA 방법을 사용하는데 있어서 몇 가지 문제점을 발견할 수가 있었다. 즉, 지금까지 FTA를 실시하는 과정에 있어서 시스템 및 부품에 대한 데이터의 자료가 정확하다는 전제하에 고장 값을 예측하여 왔다. 만일 시스템 및 부품에 대한 불확실한 데이터나 부정확한 자료를 동시에 가지고 있다면 지금까지 사용하여 왔던 전통적인 FTA를 사용하여 고장 값을 예측하여 정확한 값을 찾아내기란 어려운 것이라 할 수가 있다. 이와 같은 문제점을 해결하기 위해서는 본 연구에서 제시하는 Fuzzy FTA를 사용하는 것이 보다 바람직할 것이며, 이러한 방법을 사용하여 불확실하고 부정확한 데이터를 가지고 고장진단을 실시하여 고장가능성 값을 찾아내어 전체 시스템의 고장 발생 가능성을 예측하는 것이 이 논문의 목적이라 할 수가 있다.
Journal of the Korean Data and Information Science Society
/
v.22
no.4
/
pp.755-764
/
2011
In many companies field failure data is used to predict the future number of failures, especially when an unexpected failure mode happens to be a problem. It is because they want to predict the number of spare parts needed and the future quality warranty cost associated with the part based on the predictions of the future number of failures. In this paper field summary data is used to predict the future number of failures based on an appropriate distribution. Other types of data are also investigated to identify the appropriate distribution.
본고에서는 TDX-1A 시스팀의 운용 데이터를 신뢰도 측면에서 분석하여, 시스팀이 가지는 신뢰도 분포 특성과 고장 현황 구성을 살펴보았다. 또한 하드웨어 신뢰도만 예측될 수 있는 시스팀에서 예측하기 어려운 하드웨어 외적 요인에 의한 고장이 시스팀의 신뢰도에서 차지하는 부분을 추정함으로써 하드웨어 고장과 소프트웨어 및 운용중 에러에 의한 고장을 감안한 시스팀 신뢰도 예측이 가능하도록 하였다.
Hyung-Jin Kim;Kwang-Sik Kim;Se-Yun Hwang;Jang-Hyun Lee
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2022.06a
/
pp.110-110
/
2022
본 연구는 자율운항 선박의 원격 고장 진단 기법 개발의 일부로 수행되었다. 특히, 엔진 연료 계통 장비로부터 계측된 시계열 데이터로부터 상태 진단을 위한 알고리즘 구현 결과를 제시하였다. 엔진 연료 펌프와 청정기를 가진 육상 실험 장비로부터 진동 시계열 데이터 계측하였으며, 이상 감지, 고장 분류 및 고장 예측이 가능한 심층 학습(Deep Learning) 및 기계 학습(Machine Learning) 알고리즘을 구현하였다. 육상 실험 장비에 고장 유형 별로 인위적인 고장을 발생시켜 특징적인 진동 신호를 계측하여, 인공 지능 학습에 이용하였다. 계측된 신호 데이터는 선행 발생한 사건의 신호가 후행 사건에 영향을 미치는 특성을 가지고 있으므로, 시계열에 내포된 고장 상태는 시간 간의 선후 종속성을 반영할 수 있는 학습 알고리즘을 제시하였다. 고장 사건의 시간 종속성을 반영할 수 있도록 순환(Recurrent) 계열의 RNN(Recurrent Neural Networks), LSTM(Long Short-Term Memory models)의 모델과 합성곱 연산 (Convolution Neural Network)을 기반으로 하는 Conv1D 모델을 적용하여 예측 정확성을 비교하였다. 특히, 합성곱 계열의 RNN LSTM 모델이 고차원의 순차적 자연어 언어 처리에 장점을 보이는 모델임을 착안하여, 신호의 시간 종속성을 학습에 반영할 수 있는 합성곱 계열의 Conv1 알고리즘을 고장 예측에 사용하였다. 또한 기계 학습 모델의 효율성을 감안하여 XGBoost를 추가로 적용하여 고장 예측을 시도하였다. 최종적으로 연료 펌프와 청정기의 진동 신호로부터 Conv1D 모델과 XGBoost 모델의 고장 예측 성능 결과를 비교하였다
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2022.11a
/
pp.265-267
/
2022
선박 기관시스템이 효율적이고 안이정적인 운용을 위해서는 실시간 상태 모니터링 기반의 이상탐지, 고장진단 더 나아가 고장예측에 따른 대응조치를 할 수 있는 기술이 필요하며 이를 상태기반 유지관리(Condition Based Maintenance, CBM)이라 지칭한다. 해당 기술을 개발 및 확보하기 위해서는 가장 우선적으로 기관시스템에 대한 다양한 고장 데이터가 확보되어야 하며 이후, 확보된 데이터에 대한 특징추출 등 전처리 알고리즘, 고장 진단 및 예측 알고리즘 등을 개발하여야 한다. 본 연구에서는 선박 추진용 엔진 및 발전기 엔진에 대한 상태기반 유지관리 기술의 개발현황과 향후 지속적인 연구 추진방향을 소개하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.