• Title/Summary/Keyword: 고장 수목

Search Result 55, Processing Time 0.021 seconds

Seismic Fragility Analysis of Substation Systems by Using the Fault Tree Method (고장수목을 이용한 변전소의 지진취약도 분석)

  • Kim, Min-Kyu;Choun, Young-Sun;Choi, In-Kil;Oh, Keum-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.47-58
    • /
    • 2009
  • In this study, a seismic fragility analysis was performed for substation systems in Korea. To evaluate the seismic fragility function of the substation systems, a fragility analysis of the individual equipment and facilities of the substation systems was first performed, and then all systems were considered in the fragility analysis of the substation systems using a fault-tree method. For this research, the status of the substation systems in Korea was investigated for the classification of the substation systems. Following the classification of the substation systems, target equipment was selected based on previous damage records in earthquake hazards. The substation systems were classified as 765kV, 345kV, and 154kV systems. Transformer and bushing were chosen as target equipment. The failure modes and criteria for transformer and bushing were decided, and fragility analysis performed. Finally, the fragility functions of substation system were evaluated using the fault tree method according to damage status.

Probabilistic Safety Assessment of Gas Plant Using Fault Tree-based Bayesian Network (고장수목 기반 베이지안 네트워크를 이용한 가스 플랜트 시스템의 확률론적 안전성 평가)

  • Se-Hyeok Lee;Changuk Mun;Sangki Park;Jeong-Rae Cho;Junho Song
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.4
    • /
    • pp.273-282
    • /
    • 2023
  • Probabilistic safety assessment (PSA) has been widely used to evaluate the seismic risk of nuclear power plants (NPPs). However, studies on seismic PSA for process plants, such as gas plants, oil refineries, and chemical plants, have been scarce. This is because the major disasters to which these process plants are vulnerable include explosions, fires, and release (or dispersion) of toxic chemicals. However, seismic PSA is essential for the plants located in regions with significant earthquake risks. Seismic PSA entails probabilistic seismic hazard analysis (PSHA), event tree analysis (ETA), fault tree analysis (FTA), and fragility analysis for the structures and essential equipment items. Among those analyses, ETA can depict the accident sequence for core damage, which is the worst disaster and top event concerning NPPs. However, there is no general top event with regard to process plants. Therefore, PSA cannot be directly applied to process plants. Moreover, there is a paucity of studies on developing fragility curves for various equipment. This paper introduces PSA for gas plants based on FTA, which is then transformed into Bayesian network, that is, a probabilistic graph model that can aid risk-informed decision-making. Finally, the proposed method is applied to a gas plant, and several decision-making cases are demonstrated.

The comparative risk assessment of LNG tank designs using FTA (고장수목분석법을 이용한 액화천연가스 저장탱크 형식별 위험성 비교 평가)

  • Lee, Seung Rim;Kim, Han Sang
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.6
    • /
    • pp.48-54
    • /
    • 2012
  • Building above-ground membrane LNG storage tanks have been recently actively reviewed because they have advantages in ease of large capacity, environmental friendliness, and low possibility of gas leakage of the inner tank (slow increase of leakage speed). In this paper, the safety of membrane LNG storage tanks was ensured through comparative risk assessment of full-containment LNG storage tanks and membrane LNG storage tanks by using Fault Tree Analysis (FTA). Risk assessment results showed that both types of tanks have very similar level of risk except for the membrane storage tanks without additional safety equipments (early model).

회원사탐방 - 순천의 새로운 관광명소로 떠오른 상명수목원을 찾아서...

  • Kim, Hae-Ung
    • Landscaping Tree
    • /
    • s.111
    • /
    • pp.10-16
    • /
    • 2009
  • 순천만에 가면, 붉은 노을과 하얀 갈대 그리고 그 사이로 난 S자 물길이 황금빛으로 물들면 작은 물새들이 하늘 가득 날아오르고, 진객 흑두루미, 재두루미와 하얀 백조들이 날개짓하는 세계 5대 연안습지를 자랑하는 천혜의 고장 순천에서 바다와는 먼 산골에다 멋진 조경수 농장을 조성, 새로운 관광명소로 떠오른 유상석 사장의 상명수목원을 찾았다.

  • PDF

초기사건의 위험달성가치 중요도 척도 계산 방법에 대한 연구

  • 김길유;정우식;강대일;양준언
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2003.05a
    • /
    • pp.114-119
    • /
    • 2003
  • 원자력발전소를 비롯한 위험 시설물의 확률론적 안전성 평가(Probabilistic Safety Assessment: PSA)는 고장수목(Fault Tree) 및 사건수목(Event Tree) 분석으로 이루어지며, 분석 결과로 그 시설물의 위험도(Risk)는 최소단절집합(Minimal Cutsets)들의 합으로 구성 된다.(중략)

  • PDF

Construction of Event Tree & Fault Tree for Train Fire Risk Assessment (철도화재사고 위험도평가를 위한 Event Tree 및 Fault Tree 구성)

  • Kwak, Sang-Log;Wang, Jong-Bae;Lee, Bong-Seob;Park, Chan-Woo
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.6
    • /
    • pp.530-535
    • /
    • 2008
  • After train fire accident in Daegue, many research on train fire safety improvement have been carrying out. Since many alternative fire safety measures can be applied in our railway system, the effect of the each safety measure must be quantified prior to the safety investment. In order to estimate the effects of each safety measure quantitatively, fault trees and event trees are constructed in this study. Results can be applied for cost-benefit analysis or sensitivity analysis for safety measures in risk assessment process.

FTA를 이용한 LNG 하역설비의 정량적 위험성 평가

  • 한정민;오신규;백재진;이필호;이광원
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2002.05a
    • /
    • pp.339-345
    • /
    • 2002
  • FTA(Fault free Analysis)는 시스템 고장을 발생시키는 사상(event)과 그의 원인과의 인과관계를 논리기호(AND 와 OR)를 사용하여 나뭇가지 모양의 그림으로 나타낸 고장수목(Fault Tree)을 만들고, 이에 의거하여 시스템의 고장확률을 구함으로써 문제가 되는 부분을 찾아내어 시스템의 신뢰성을 개선하는 정량적 고장해석 및 신뢰성 평가 방법이다.(중략)

  • PDF

Feasibility Study on the Risk Quantification Methodology of Railway Level Crossings (철도건널목 위험도 정량평가 방법론 적용성 연구)

  • Kang, Hyun-Gook;Kim, Man-Cheol;Park, Joo-Nam;Wang, Jong-Bae
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.605-613
    • /
    • 2007
  • In order to overcome the difficulties of quantitative risk analysis such as complexity of model, we propose a systematic methodology for risk quantification of railway system which consists of 6 steps: The identification of risk factors, the determination of major scenarios for each risk factor by using event tree, the development of supplementary fault trees for evaluating branch probabilities, the evaluation of event probabilities, the quantification of risk, and the analysis in consideration of accident situation. In this study, in order to address the feasibility of the propose methodology, this framework is applied to the prototype risk model of nation-wide railway level crossings. And the quantification result based on the data of 2005 in Korea will also be presented.

  • PDF

A Study of Life about Naturally Aged Nitrocellulose by Storage (자연 노화된 니트로셀룰로오스의 수명에 관한 연구)

  • Kim, Dong-seong;Jin, Hong-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.595-601
    • /
    • 2020
  • During the safety inspection of nitrocellulose-made explosive containers stored for more than 10 years, cracks were found in the containers. Therefore, a failure cause analysis test was performed. First, the cause of failure through the failure tree analysis was conducted to select the factors that influenced failure. The changes in the properties of the container caused by the acceleration of the reaction were found to be the cause of the failure by confirming the influence on the environment and internal/external factors that may occur during storage. To confirm this, environmental tests, such as thermal shock test and vacuum thermal stability test, were performed using a naturally aged container to analyze the cause of failure, and an accelerated aging test was performed to reproduce the failure. Through this, the chemical reaction was accelerated by heat and charge, as in the result of the fault tree analysis, and it was confirmed that the physical properties of the container were changed. In addition, the service life of the container was estimated using the Arrhenius model for the storage life due to thermal aging.

Bayesian Network-based Probabilistic Safety Assessment for Multi-Hazard of Earthquake-Induced Fire and Explosion (베이지안 네트워크를 이용한 지진 유발 화재・폭발 복합재해 확률론적 안전성 평가)

  • Se-Hyeok Lee;Uichan Seok;Junho Song
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.3
    • /
    • pp.205-216
    • /
    • 2024
  • Recently, seismic Probabilistic Safety Assessment (PSA) methods have been developed for process plants, such as gas plants, oil refineries, and chemical plants. The framework originated from the PSA of nuclear power plants, which aims to assess the risk of reactor core damage. The original PSA method was modified to adopt the characteristics of a process plant whose purpose is continuous operation without shutdown. Therefore, a fault tree, whose top event is shut down, was constructed and transformed into a Bayesian Network (BN), a probabilistic graph model, for efficient risk-informed decision-making. In this research, the fault tree-based BN from the previous research is further developed to consider the multi-hazard of earthquake-induced fire and explosion (EQ-induced F&E). For this purpose, an event tree describing the occurrence of fire and explosion from a release is first constructed and transformed into a BN. And then, this BN is connected to the previous BN model developed for seismic PSA. A virtual plot plan of a gas plant is introduced as a basis for the construction of the specific EQ-induced F&E BN to test the proposed BN framework. The paper demonstrates the method through two examples of risk-informed decision-making. In particular, the second example verifies how the proposed method can establish a repair and retrofit strategy when a shutdown occurs in a process plant.