Gang, Gil-Sun;Lee, Seung-Yeon;Im, Yu-Cheol;Lee, Jong-Hyo;Yu, Jun
Proceedings of the KIEE Conference
/
2003.11b
/
pp.283-286
/
2003
본 연구는 기존의 고장진단 기법들을 토대로 주어진 자동화 시스템에 실제 적용이 가능한 고장예측 알고리즘을 제시한다. 고장예측은 시스템이 운용되는 도중에 제한된 정보와 컴퓨터 자원을 이용하여 수행되어야 하므로 실시간 적용을 위하여 2단계로 구분하여 수행된다. 첫 번째는 실시간 고장예측 단계로서 시스템 운용 중에 시스템의 고장 징후를 탐지하는 역할을 하며, 두 번째는 오프라인 고장예측 단계로서 실시간으로 고장 징후가 탐지되면 시스템의 작동을 멈춘 후 고장의 징후를 분류하고 식별하는 역할을 수행한다 원활한 고장예측 알고리즘을 도출하기 위해 자동화 시스템의 이산사건 모델과 연속시간 모델을 수립하였으며, 이들을 통합한 공정모델에 대하여 하이브리드 시뮬레이션 환경을 구축하였다. 제안된 기법은 자동화 시스템의 공정모델에 기구부, 모터부에 대한 고장모델을 부가하여 컴퓨터 시뮬레이션을 통하여 타당성을 검증하였다.
Journal of the Korean Society for Aeronautical & Space Sciences
/
v.39
no.2
/
pp.144-152
/
2011
This paper presents a new scheme for fault detection and isolation in the satellite system. The purpose of this paper is to develop a fault detection, isolation and diagnosis algorithm based on the bank of interacting multiple model (IMM) filter for both total and partial faults in a satellite attitude control system (ACS). In this paper, IMM are utilized for detection and diagnosis of anticipated actuator faults in a satellite ACS. Other fault detection, isolation (FDI) schemes using conventional IMM are compared with the proposed FDI scheme. The FDI procedure is developed in two stages. In the first stage, 11 EKFs actuator fault models are designed to detect wherever actuator faults occur. In the second stage of the FDI scheme, two filters are designed to identify the fault type which is either the total or partial fault. An important feature of the proposed FDI scheme can decrease fault isolation time and figure out not only fault detection and isolation but also fault type identification.
현재 산업의 고도상장과 함께 주기적으로 고장을 진단하여야 하는 기기의 수와 종류도 급속도로 증가하고 있다. 이에 따라 여러 산업 분야에서 고장진단 시스템의 이용이 늘고 있는 추세이다. 이러한 고장진단 시스템은 경험적 고장진단 방식과 모델기반 고장 진단 방식으로 크게 나눌 수 있다. 경험적 고장진단 방식은 전문가가 경험한 사실의 범주에서는 신속하게 고장의 원인을 진단할 수 있지만 전문가가 경험하지 못했던 상황에 대해서는 융통성 있게 진단하지 못한다. 한편 기기의 물리적 기능적 지식을 기반으로 하는 모델기반 고장진단 방식을 변화하는 상황에 적절하게 대처하여 고장의 원인을 진단할 수 있다. 그러나 모델기반 고장진단 방식을 기기의 구조로부터 증상들을 추론하여 원인을 파악하므로 탐색 범위가 넓어 진단속도가 늦다는 단점이 있다. 본 연구에서는 이러한 경험적 고장진단 방식과 기기의 모델기반 고장진단 방식의 장점을 결합하여 신속하고 정확하게 고장진단을 할 수 있는 통합방식 고장진단 시스템을 제시한다. 통합방식 고장진단 시스템은 대상 기기의 진단 상태에 따라서 동적으로 적절한 진단 방식을 선택하기 위해서 블랙보드 추론기관을 이용한다. 또한 각 진단방식이 생성하는 가설 및 사실들을 효과적으로 통합하여 추론하기 위해서 제어지식을 정의하여 적용한다. 그리고 사용자와 진단 시스템간에 원활한 의사소통을 위해서 멀티미디어 기반 인터페이스를 채용하여 통합방식 진단 시스템을 구축한다.
For pressure safety valves, open failure and close failure are partially dependent on each other. A method is proposed in this work that uses a Markov process model and a Weibull distribution model in order to construct a reliability model for two kinds of failure. A pressure safety valve model is obtained from a known open failure model, an induced close failure model, and a simultaneous failure model that reproduces recently reported inspection results. It is expected that the application of the proposed method can be expanded to quantitative risk assessment of various systems that have partially dependent multiple failure states.
Hyung-Jin Kim;Kwang-Sik Kim;Se-Yun Hwang;Jang-Hyun Lee
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2022.06a
/
pp.110-110
/
2022
본 연구는 자율운항 선박의 원격 고장 진단 기법 개발의 일부로 수행되었다. 특히, 엔진 연료 계통 장비로부터 계측된 시계열 데이터로부터 상태 진단을 위한 알고리즘 구현 결과를 제시하였다. 엔진 연료 펌프와 청정기를 가진 육상 실험 장비로부터 진동 시계열 데이터 계측하였으며, 이상 감지, 고장 분류 및 고장 예측이 가능한 심층 학습(Deep Learning) 및 기계 학습(Machine Learning) 알고리즘을 구현하였다. 육상 실험 장비에 고장 유형 별로 인위적인 고장을 발생시켜 특징적인 진동 신호를 계측하여, 인공 지능 학습에 이용하였다. 계측된 신호 데이터는 선행 발생한 사건의 신호가 후행 사건에 영향을 미치는 특성을 가지고 있으므로, 시계열에 내포된 고장 상태는 시간 간의 선후 종속성을 반영할 수 있는 학습 알고리즘을 제시하였다. 고장 사건의 시간 종속성을 반영할 수 있도록 순환(Recurrent) 계열의 RNN(Recurrent Neural Networks), LSTM(Long Short-Term Memory models)의 모델과 합성곱 연산 (Convolution Neural Network)을 기반으로 하는 Conv1D 모델을 적용하여 예측 정확성을 비교하였다. 특히, 합성곱 계열의 RNN LSTM 모델이 고차원의 순차적 자연어 언어 처리에 장점을 보이는 모델임을 착안하여, 신호의 시간 종속성을 학습에 반영할 수 있는 합성곱 계열의 Conv1 알고리즘을 고장 예측에 사용하였다. 또한 기계 학습 모델의 효율성을 감안하여 XGBoost를 추가로 적용하여 고장 예측을 시도하였다. 최종적으로 연료 펌프와 청정기의 진동 신호로부터 Conv1D 모델과 XGBoost 모델의 고장 예측 성능 결과를 비교하였다
본 논문에서는 배전분야 설비관리 시스템을 대상으로 배전설비 고장시 GIS 기능을 이용하여 고장설비를 예측할 수 있는 방법과 구현 실례를 소개하고자 한다. 배전설비관리를 위한 지리정보 데이터 모델은 가공과 지중, 전기와 비전기, 점형과 선형의 특성을 가지는 배전설비의 특성을 분석하여 모델링된다. 모델링의 결과 생성된 데이터베이스는 실세계에 존재하는 대부분의 객체에 대한 정보를 포함하고 있으므로 매우 크고 그 구조 또한 복잡하다. 그러므로 응용프로그램이 필요로 하는 데이터를 추출하기 위하여 많은 시간이 요구된다. 그러나 고장복구업무를 위한 시스템은 사용자의 만족도를 위하여 추론의 정확성과 더불어 응답속도를 최소화하는 것이 필수조건이다. 이를 위하여 GIS 데이터베이스 모델을 좀 더 개량할 필요가 있으며, 본 논문에서는 이에 대한 한가지 방안으로 배전설비의 GIS 모델의 축약된 형태인 관계형 데이터베이스 모델을 제시한다. 고장점 추론은 이렇게 만들어진 축약모델을 이용하여 진행되며 고장신고 고객별로 회선, 개폐기, 변압기, 인입주 등 정보를 추출하고 추출된 설비들의 계통상 위치의 유사성을 추론하여 최종 예측점을 파악한다.
Journal of the Korea Academia-Industrial cooperation Society
/
v.19
no.10
/
pp.410-417
/
2018
System design errors are more likely to occur in modern systems because of their steadily increasing size and complexity. Failures due to system design errors can cause safety-related accidents in the system, resulting in extensive damage to people and property. Therefore, international standards organizations, such as the U.S. Department of Defense and the International Electrotechnical Commission, have established international safety standards to ensure system safety, and recommend that system design and safety activities should be integrated. Recently, the safety of a system has been verified by modeling through a model-based system design. On the other hand, system design and safety activities have not been integrated because the model for system design and the failure model for safety analysis and verification were developed using different modeling language platforms. Furthermore, studies using UML or SysML-based failure models for deriving safety requirements have shown that these models have limited applicability to safety analysis and verification. To solve this problem, it is essential to extend the existing methods for failure model implementation. First, an improved SysML-based failure model capable of integrating system design and safety verification activities should be produced. Next, this model should help verify whether the safety requirements derived via the failure model are reflected properly in the system design. Therefore, this paper presents the concept and method of developing a SysML-based failure model for an automotive system. In addition, the failure model was simulated to verify the safety of the automotive system. The results show that the improved SysML-based failure model can support the integration of system design and safety verification activities.
Journal of the Institute of Electronics Engineers of Korea SC
/
v.39
no.1
/
pp.42-50
/
2002
In this paper, we propose an FDI(fault detection and isolation) method using neural network-based multi-fault models to detect and isolate faults in nonlinear systems. When a change in the system occurs, the errors between the system output and the neural network nominal system output cross a threshold, and once a fault in the system is detected, the fault classifier statistically isolates the fault by using the error between each neural network-based fault model output and the system output. From the computer simulation results, it is verified that the proposed fault diagonal method can be performed successfully to detect and isolate faults in a nonlinear system.
KIPS Transactions on Software and Data Engineering
/
v.4
no.1
/
pp.9-18
/
2015
Software Reliability Growth Models (SRGMs) are useful for determining the software release date or additional testing efforts by using software failure data. It is not appropriate for a SRGM to apply to all software. And besides a large number of SRGMs have already been proposed to estimate software reliability measures. Therefore selection of an optimal SRGM for use in a particular case has been an important issue. The existing methods for selecting a SRGM use the entire collected failure data. However, initial failure data may not affect the future failure occurrence and, in some cases, it results in the distorted result when evaluating the future failure. In this paper, we suggest a method for selecting a SRGM based on the evaluation goodness-of-fit using partial data. Our approach uses partial data except for inordinately unstable failure data in the entire failure data. We will find a portion of data used to select a SRGM through the comparison between the entire failure data and the partial failure data excluded the initial failure data with respect to the predictive ability of future failures. To justify our approach this paper shows that the predictive ability of future failures using partial data is more accurate than using the entire failure data with the real collected failure data.
Kim, Kyeong-Hwa;Choi, Dong-Uk;Gu, Bon-Gwan;Jung, In-Soung
Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
/
v.23
no.6
/
pp.40-51
/
2009
To analyze influences under open faults in switching devices of the PWM inverter and under the isolation between the inverter and motor terminal, a faulty model for the inverter-driven permanent magnet synchronous motor is presented. Even though the conventional dq motor model obtained through the transformation of phase voltage model is widely used to analyze and control AC motor, it can not be used under open faults in switching devices since the 3-phase balanced condition is no longer hold under the open fault and it is not easy to obtain motor input voltages in open phase from the pole voltage. To deal with this problem, a faulty model for an inverter-driven permanent magnet synchronous motor is derived by using the line voltage of motor according to switch open, which can be effectively used for performance evaluation of the diagnostic algorithm. The validity of the proposed faulty model is verified through comparative simulations and experiments using DSP TMS320F28335.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.