• 제목/요약/키워드: 고장 데이터

검색결과 771건 처리시간 0.027초

운용데이타에 의한 부품 고장률 분석 및 예측고장률과의 비교 분석

  • 정철오;김종민;김창희;이종숙;고재상
    • ETRI Journal
    • /
    • 제14권4호
    • /
    • pp.97-105
    • /
    • 1992
  • 본 고에서는 TDX-1A 시스팀의 고장데이타를 신뢰도 측면에서 분석하여 운용중 발생하는 부품의 평가고장률을 도출하였다. 또한 도출된 평가고장률을 MIL-HDBK-217방법에 의해 구한 예측고장률과 비교 분석함으로써, TDX-1A 시스팀 신뢰도 예측시 적용했던 MIL-HDBK-217 예측방법이 실제 운용데이터보다 높게 나타나고 있음을 제시하였다. IC 부품에 대해 외국의 부품고장률 계산식을 살펴보고, 그에 따른 고장률 계산결과를 살펴봄으로써, 운용데이터를 이용한 운용환경에 적합한 부품고장률 예측식의 설정 연구가 필요함을 아울러 제시하였다.

  • PDF

전동기 고장 진단을 위한 신호 수집 및 분석용 도구에 관한 연구 (A study on Application for Signal Acquisition and Analysis for Motor Fault Diagnosis)

  • 김기석;조용호;가인호;홍선기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.876-877
    • /
    • 2015
  • 전동기의 고장 진단을 함에 있어 데이터의 수집은 필수적으로 이루어 져야 하며 데이터를 수집하는 과정에서 데이터의 손상이나 손실을 없애기 위해 어플리케이션을 만들었다. 제작한 어플리케이션은 모터의 전압과 전류, 소음과 진동을 실시간으로 측정 할 수 있으며, 고장 여부를 판단 할 수 있도록 파일로 저장 가능하게 만들었고, 저장하는 과정에서 데이터가 손실 되지 않도록 버퍼를 사용하였다. 더 효율적으로 측정이 가능하도록 하여 전동기의 고장 진단에 있어 확실한 데이터를 얻을 수 있도록 연구하였다.

  • PDF

무선센서네트워크에서 신뢰성있는 데이터수집을 위한 고장감내형 데이터 병합 기법 (Fault Tolerant Data Aggregation for Reliable Data Gathering in Wireless Sensor Networks)

  • 백장운;남영진;정승완;서대화
    • 한국통신학회논문지
    • /
    • 제35권9B호
    • /
    • pp.1295-1304
    • /
    • 2010
  • 본 논문에서는 에너지 효율적이고 신뢰성있는 데이터수집을 제공하는 고장감내형 데이터병합을 제안한다. 기존 데이터병합 기법은 패킷 손실에 대응하지 못하거나 대응 하더라도 에너지 소모가 매우 크다. 고장감내형 데이터병합은 적응적 타임아웃 데이터병합 기법에 트랙 토폴로지를 이용한 캐싱 및 재전송 기법을 적용하여 중요 이벤트에 대해 신뢰성있는 데이터수집을 제공한다. 고장감내형 데이터병합은 이벤트 가능성이 없는 평상시에는 기존의 트리 기반의 단일경로 데이터수집을 함으로써 에너지 소모를 줄인다. 하지만 이벤트 가능성이 감지되면 트랙 토폴로지를 이용한 패킷 손실 감지 및 재전송을 통해 데이터병합 결과의 정확도를 높인다. 실험 결과에서 고장감내형 데이터병합은 평균 소모 에너지 측면에서 TAG에 비해 약 8% 에너지 소모가 감소하였고, 이벤트 발생 가능성이 있을 경우 데이터 정확도 측면에서 TAG에 비해 41%정도 우수한 성능을 보였다. 그리고 평균 소모 에너지 측면에서 PERLA에 비해 약 53% 정도 에너지 소모가 감소하였으며, 이벤트 발생 가능성이 있을 경우 데이터 정확도 측면에서는 성능 저하가 거의 없었다.

실시간 발전소 시설 장비 센서 데이터에 대한 빅데이터 스트리밍 질의 처리 시스템 설계 및 구현 (Design and Implementation of Big Data Streaming Query Processing System for Realtime Power Plant Sensor data)

  • 엄정호;유찬희;;박경석
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 추계학술발표대회
    • /
    • pp.88-91
    • /
    • 2020
  • 발전 시설은 연간 무중단으로 운영되어야 하고, 고장이 발생하면 손해가 막대하기 때문에 발전 시설 장비에는 수십만 개의 센서 데이터가 설치되어 있다. 본 논문에서는 효율적인 센서 데이터의 수집과 시설 모니터링 및 고장 예측 등을 위한 빅데이터 스트리밍 질의 처리 시스템을 설계 및 구현하였다. 또한 실시간 데이터 수집의 효율적인 관리를 위해 인코딩 방식을 설계하였으며, 데이터 전송 성능을 측정하여 문자열로 데이터를 전송하는 것보다 평균 12%, 최대 32% 데이터 처리 성능이 향상됨을 보였다. 또한, 스트리밍 데이터에 대한 윈도우 질의 처리 성능을 측정하여 약 0.97초의 평균 집계 질의 처리 시간이 소요됨을 확인하였다. 향후에는 고장 감지를 위한 인공지능 추론 모델을 제안하는 빅데이터 스트리밍 질의 처리 시스템에 적용할 예정이다.

BLDCM 구동 인버터의 실시간 데이터를 이용한 고장진단 (Fault Diagnosis based on Real-Time Data of the inverter system for BLDCM drive)

  • 김광헌;배동관
    • 조명전기설비학회논문지
    • /
    • 제12권2호
    • /
    • pp.29-37
    • /
    • 1998
  • 이 논문은 브리시리스 직류전동기의 구동 인버터의 실시간 데이터를 이용한 고장진단에 관한 것이다. 구동 인버터의 고장유형을 파악하여 주요 고장증세별로 분류하고, 고장결과를 예측하여 ASCL로 시뮬레이션함으로써 지식 베이스로 구성하였다. 구동 인버터에 대해 실시간으로 감시된 데이터는 전문가 시스템의 추론기관에서 시뮬레이션된 지식베이스와 비교하게 된다. 고장이 발생하면, 운전을 중지시킨 후, 전문가 추론을 함으로써 고장원인을 진단한다. 이로써 구동 인버터에 대해 전문적인 지식을 갖고 있지 않는 사용자에게, 고장원인 제거 및 수리대책에 관한 전문가의 지식을 신속히 제공하는 것이다.

  • PDF

다중 센서를 이용한 음향 센서 시스템의 고장 진단 (A Fault Detection Scheme in Acoustic Sensor Systems Using Multiple Acoustic Sensors)

  • 오원근
    • 한국전자통신학회논문지
    • /
    • 제11권2호
    • /
    • pp.203-208
    • /
    • 2016
  • 본 논문에서는 음향 센서 시스템에서 다중 센서를 이용한 실시간 고장 진단 및 데이터 처리 알고리즘을 제안하고 실험을 통해 그 타당성을 입증하였다. 다중 센서 알고리즘은 하나의 물리량 계측을 위해 여러 개의 센서를 동시에 사용하는 방식을 사용하며 효율적으로 센서의 고장을 감지하여 신뢰성 있는 데이터를 출력할 수 있는 방법이다. 이를 음향 센서 시스템에 적용하기 위해 등가 소음레벨 $L_{eq}$를 이용한 실시간 고장 진단 및 오류 데이터 처리 알고리즘을 제안하고, 이를 검증하기 위한 실험 장치와 프로그램을 제작하고 실험하였다. 그 결과 다중 센서 알고리즘은 음향 센서 시스템에도 잘 적용되어 일부 센서의 고장 시에도 정확한 데이터 처리가 가능함을 보였다.

Spark Streaming 기반 클라우드 시스템에서 실시간 고장 복구를 지원하기 위한 기법들 (Techniques to Guarantee Real-Time Fault Recovery in Spark Streaming Based Cloud System)

  • 김정호;박대동;김상욱;문용식;홍성수
    • 정보과학회 논문지
    • /
    • 제44권5호
    • /
    • pp.460-468
    • /
    • 2017
  • 실시간 클라우드의 실현에 있어서 데이터 분석 프레임워크는 중추 역할을 수행한다. 현존하는 프레임워크들 중에 가장 많은 요구사항들을 충족하는 것은 Spark Streaming이다. 하지만 이 프레임워크는 초 단위 실시간 고장 복구를 충족하지 못하고 있다. Spark Streaming의 고장 복구 기법은 정상 동작시에 기록된 누적 변형 히스토리를 토대로 고장 직전 마지막 상태 데이터를 재연산하여 복구하기 때문에 히스토리의 길이에 비례하여 복구 시간이 증가된다. 따라서 제한된 시간 이내에 고장 복구가 완료됨을 보장되지 않는다. 또한 초기 상태 데이터를 고장 감내 스토리지에서 읽는 시간이 수십 초에 달하여 초 단위고장 복구 시간을 달성할 수 없다. 본 논문에서는 언급된 문제들을 해결하기 위한 두 가지 기법들을 제안한다. 이를 Spark Streaming 1.6.2에 적용하고, 실험을 통해 고장 복구 시간이 제한 시간 이내에 완료되며 평균 약 41.57% 단축됨을 확인했다.

항공기 정비계획을 위한 J79 엔진 Transfer Gearbox의 고장데이터 분석 (Failure Data Analysis of J79 Engine Transfer Gearbox for Aircraft Maintenance Planning)

  • 최재만;양승효;황영하;손익상;온용섭;김영진
    • 대한기계학회논문집A
    • /
    • 제34권6호
    • /
    • pp.781-787
    • /
    • 2010
  • 고장의 특성을 예상하는 것은 미래의 고장을 예견하고 최적의 교체간격을 결정할 수 있도록 해주기 때문에 정비 계획에서 매우 중요하다. 본 연구에서는 신뢰도 해석에서 가장 전통적인 방법 중의 하나인 확률지에 도시하는 기법을 이용하여 J79 엔진 Transfer Gearbox의 고장 분포를 검토하였다. 고장 데이터에 대한 적절한 분포를 찾기 위해서 다양한 확률분포가 이용되었으며, 얻어진 상관계수는 고장데이터가 대수정규분포에 가장 근접함을 나타내었다. 예상되는 비계획 정비행위의 횟수와 다양한 비용 비율에 대해서 최적의 교체간격을 구하였다.

K-means를 활용한 항로표지 센서 데이터 군집화

  • 김두환;성상하;최형림
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2022년도 춘계학술대회
    • /
    • pp.54-55
    • /
    • 2022
  • 해양에 설치된 항로표지는 선박의 안전한 항해를 위해 위치 정보를 제공하고, 항로표지에 부착된 센서를 통해 다양한 해양 정보를 수집하고 있다. 하지만 항로표지는 육지와 멀리 떨어진 해상이라는 특수한 작업환경으로 인해 항로표지 유지보수를 위한 많은 시간과 비용이 발생하게 된다. 현재 항로표지에 부착된 센서를 통해 다양한 정보를 수집하고 있지만, 정상 데이터와 비정상 데이터를 구분할 수 있는 정보가 없어 고장진단에 어려움이 있다. 따라서 본 연구에서는 항로표지 센서 고장진단을 위해 머신러닝 비지도학습 중 하나인 K-means 알고리즘을 활용하여 정상 데이터와 비정상 데이터로 군집화하였으며, 분류가 잘 되는 것을 확인할 수 있었다. 향후 연구방향으로는 2개의 클러스터로 구분된 데이터가 실제로 정상 데이터인지, 비정상 데이터인지에 대한 비교·분석이 필요하다.

  • PDF

자율운항선박 핵심 기관시스템 성능 모니터링 및 고장예측 진단 기술 개발

  • 박재철;권혁찬;이갑헌;장화섭
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2022년도 추계학술대회
    • /
    • pp.265-267
    • /
    • 2022
  • 선박 기관시스템이 효율적이고 안이정적인 운용을 위해서는 실시간 상태 모니터링 기반의 이상탐지, 고장진단 더 나아가 고장예측에 따른 대응조치를 할 수 있는 기술이 필요하며 이를 상태기반 유지관리(Condition Based Maintenance, CBM)이라 지칭한다. 해당 기술을 개발 및 확보하기 위해서는 가장 우선적으로 기관시스템에 대한 다양한 고장 데이터가 확보되어야 하며 이후, 확보된 데이터에 대한 특징추출 등 전처리 알고리즘, 고장 진단 및 예측 알고리즘 등을 개발하여야 한다. 본 연구에서는 선박 추진용 엔진 및 발전기 엔진에 대한 상태기반 유지관리 기술의 개발현황과 향후 지속적인 연구 추진방향을 소개하고자 한다.

  • PDF