신제품에 대한 개발 주기가 짧아지고 있는 현시점에서 제품의 수명을 예측하고 평가하기 위한 방법으로 가속 수명시험과 시험을 통해 관측된 고장 데이터의 분석에 대한 관심이 증대되고 있다. 이에 따라 가속 수명시험을 위한 시험 조건과 고장 데이터의 정확한 분석을 위한 고장 데이터의 최적 분포 결정 방법에 대한 관심 또한 증대되고 있다. 따라서 본 논문에서는 고장 데이터를 기반으로 신뢰성 예측을 할 때 사용하는 분포 함수 결정을 위한 방법으로 관측된 고장 데이터만의 분포를 고려하는 Anderson-Darling 방법과 관측된 고장 데이터의 수명-스트레스 관계식을 적용하여 고장 데이터의 분포를 결정하는 Likelihood Function 방법을 비교한다. 두 가지 방식을 비교한 결과 각 방식에 의해 선택되는 최적분포가 다르며, 따라서 각 방식에 의해 선택된 최적 분포에 의해서 예측되는 수명도 다름을 알 수 있다.
전력 에너지는 안정하고 신뢰할 수 있도록 고장에 대한 빠른 대처가 필요하다. 고장시 빠른 수리를 위해서는 보수 승무원에게 고장 위치를 정확하게 알려주어 올바른 위치에 도착할 수 있도록 고장점 표정 알고리즘의 정확도가 요구된다. 본 논문에서는 기존 1회선 분기점을 갖는 병행 2회선 송전선로의 고장점 표정 알고리즘을 이용하여 정확한 고장 위치를 찾는 방법으로 개선된 NVP(N-version programming) 모델을 적용한 새로운 계산 방법을 제안한다. 송전선로의 고장 데이터는 EMTP(Electro Magnetic Transients Program)을 사용하여 154[kV], 25[km] 분기된, 병행 2회선 송전선로에서 고장지진과 고장저항의 데이터존 이용하여 시뮬레이션했다.
제조 산업은 국가 경제 성장의 원동력으로 그 중요성이 부각되고 있다. 이에 따라 제조 공정상에서 생성되는 제조 데이터 분석의 중요성 또한 조명 받고 있다. 본 논문에서는 PCB(Printed Circuit Board) 제조 공정에서 발생한 로그 데이터를 분석하여 PCB 상에서 빈번하게 발생하는 고장 영역에 대해서 작업자가 고장 영역을 직접 눈으로 볼 수 있도록 시각화하는 방법을 제안한다. 우선 고장 영역을 파악하기 위해서 PCB 공정 데이터 집합에 K-means, DB-SCAN 클러스터링 알고리즘을 적용하여 군집화 하였고, 두 알고리즘 중 더 정확한 고장 영역을 도출하는지 비교하였다. 또한 MVC(Model-View-Controller) 구조 시스템을 개발하여 실제 PCB 이미지 상에 클러스터링 결과를 출력하는 것으로 실제 고장영역을 눈으로 확인할 수 있도록 시각화하였다.
인터넷의 대중화와 함께 데이터 통신서비스에 대한 수요로 데이터 통신망은 그 양과 종류가 급격하게 증가하고 있어서 통신망 운용에 따른 망구성 및 고장처리 체계의 정립이 필요하게 되었다. 기존의 다양한 유형의 데이터 통신망서비스 고장처리방법의 통합하면서 새로운 차세대 통신망서비스 고장처리방안까지 수용할 수 있도록 하는 통합 고장처리시스템의 개발이 필요하다. 본 논문에서는 모든 데이터 통신망서비스에 대한 고장시험, 고객정보관리, 시선정보관리에 관련된 시스템들과의 체계적인 연동을 통한 통합 고장처리 방안을 제시하고 UML(Unified Modeling Language)과 EJB(Enterprise Java Bean) 기술을 이용한 객체지향방법에 기반한 설계를 수행한다.
무기 체계(or 구성품) 개발은 한정된 개발기간과 비용 등의 제한으로 시험 횟수가 많지 않아, 고장관련 축적된 데이터의 규모도 적다. 그러나 운용 중 발생한 고장 및 정비내역은 많은 부분 전산 데이터로 관리하고 있기 때문에 이를 활용한 무기 체계(or 구성품)의 고장원인 분석은 가능하다. 다만 다양한 무기체계의 고장 및 정비내역 작성 규격이 각 군 별, 업체별 상이하고, 고장 원인의 구체적 내역은 비정형 텍스트 데이터로 기술되어 있기 때문에 이를 분석하는데 어려움이 있었다. 그러나 오늘날 빅데이터 처리 기술과 기계학습(Machine Learning) 알고리즘의 발전, HW연산 능력의 개선과 맞물려, 상기와 같은 비정형 데이터를 처리 할 수 있는 여러 가지 방법들이 시도 되고 있으며, 주요한 연구 분야로 활발히 연구되고 있다. 본 논문에서는 국방 무기 체계(or 구성품)의 고장/정비 관련 비정형 데이터를 기계학습 기법 중 하나인 doc2vec을 적용하여 고장사례 분석 방안에 대하여 제시한다.
본 논문은 무인화 변전소 확대와 디지털보호계전기의 지속적인 적용에 따라 상시 보호계전기 상태 확인 및 필요시 정정치 변경과 전력계통 고장시 동작한 보호계전기의 동작사항을 신속히 파악하여 보호계전기 정동작 여부를 판단하여 전력계통의 신뢰도 제고하는 보호계전기 데이터 원격 취득 분석시스템 구축 방안을 연구하였다. PDAS 설치후 고장데이터 수집에 따른 출동시간을 절약하여 고장분석업무를 집중하고 절감시간을 타 업무에 활용할 수 있었으며 고장인지 후 즉시 보호계전기 데이터를 취득 분석하여 고장현상 파악 및 긴급복구 시간을 단축할 수 있는 효과를 거둘 수 있었다. PDAS 시스템 시범운영결과 발생한 문제점을 분석한 결과 고도화된 고장분석 서비스를 구축하기 위해서는 정전고장관리시스템과의 연계, 보안성 강화, 사용자 편의성향상, 신규서비스 지원이 되도록 하여 송변전 통합정보시스템과의 통합이 필요하다.
산업화와 더불어 자동화의 요구에 따라 여러 분야에서 유도전동기의 응용 사례가 늘어나고 있다. 본 연구는 인버터단의 전류센서에서 실시간 얻어진 전류신호로 부터 대표적인 전기, 기계적인 4가지 고장(Bearing Fault, Broken Rotor bar, Misalignment, Unbalance)을 검출하여 예기치 못한 고장에 대비할 수 있는 실시간 진단 알고리듬을 제시한다. 실시간 진단의 핵심요소인 동기화 방법으로서 Hilbert Transform을 응용하였다. 총 40세트의 정상 모터 데이터를 임의로 선택하여 두 데이터의 차를 이용하여 0에 근사한 정상 모터 뎀플릿 값을 설정하였다. 이를 이용하여 진단 대상 전동기의 고장 유무를 미리 판단하게 된다. 만약 기준치 이상의 오차가 나타나게 되면, 이와 비교하기 위한 미리 수집된 각4가지 고장 전동기의 미소신호 템플릿 데이터와의 유사성을 비교하여 고장의 종류를 표시하며, 고장의 종류가 진단되지 않은 대상은 고장 유무만 표시된다.
비정형 데이터의 수집, 분석 그리고 활용에 대한 필요성이 대두되고 있지만 여전히 비정형 데이터를 효과적으로 활용하지 못하고 있는 실정이다. 본 연구에서는 국내 유수 이동통신 기업의 통신 시설장비 점검 시스템에 기록된 비정형데이터를 분석하여 장비고장 대응과 예방에 적극 활용할 수 있는 기반을 만들고자 하였고, 약 220만 건의 작업일지 데이터를 텍스트 마이닝을 통해 구조화/정형화 하였다. 이를 위해 장비 고장과 관련된 4가지 분석 프레임, 고장인지, 고장원인, 고장대상, 조치결과를 구성하였고 분석 결과로는 크게 3가지의 효율화 방안과 관련한 인사이트를 얻을 수 있었다. 첫 번째로는 신속한 조치를 통한 시간 단축을 도모하고, 두 번째로는 고장장비 Unit 수요를 예측하고, 마지막으로 현장 출동의 최소화를 지원할 수 있을 것으로 기대되었다. 결론적으로, 본 사례연구는 통신시설 장비 고장 대응을 위해 데이터 분석 대상을 정형 데이터뿐만 아니라 장비일지라는 비정형 빅데이터로도 범위를 확장했으며, 이를 분석에 활용하기 위해 처음으로 텍스트 마이닝을 시도를 했다는데 의의를 가진다. 또한 N사는 정형 데이터 뿐 만아니라 년 80만 건씩 축적되던 비정형 데이터의 활용 가치를 확인할 수 있던 기회를 가졌으며, 향후 비정형 데이터의 활용 방안에 대한 발전방향 그리고 추후의 정형 데이터와의 연계 분석 방안 등에 대한 가이드를 확보할 수 있었다.
고장원인이 여럿인 수리불가능한 제품에 대하여 사용환경에서 얻어진 고장데이터와 추적조사에 의해 얻어진 설명변수에 관한 데이터를 이용하여 제품의 고장원인별 수명분포를 추정한 배도선 등(1995)의 연구를 수리가능한 제품의 경우로 확장하였다. 수명분포의 모수와 설명변수가 대수선형 관계일 때 비동질성 포아송과정을 이용하여 의사우도함수를 유도하고, 고장원인별 수명이 와이블 분포를 따를 때의 의사 최우추정량과 점근분산을 구하였다. 추적조사 방법으로는 보증기간동안 고장이 발생하지 않은 제품의 일정비율을 추적조사하는 경우와 총 시험제품의 일정비율을 랜덤하게 선택하고 이들 중에서 보증기간동안 한번도 고장이 발생하지 않은 제품에 대해서만 추적조사하는 경우를 고려하였다.
고장 진단은 IoT 장비의 안전성과 효율성을 유지하는데 필요한 기술 중 하나이다. 따라서, 본 연구는 IoT 센서 데이터를 기반한 고장 진단 알고리즘을 개발하는데 목적이 있다. 본 연구는 알고리즘의 효율성을 개선하기 위해 기술통계량을 기반하여 데이터 차원을 축소하였으며, 이를 바탕으로 고장 진단 알고리즘의 정확도 및 연산시간을 개선하였다. 본 연구는 다양한 후보 알고리즘을 활용하여 고장진단을 수행하였으며, 정확도를 기반으로 가장 우수한 알고리즘을 선정하였다. 연구 결과, Isolation Forest 알고리즘이 가장 뛰어난 분류 결과를 나타내었다. 본 연구결과를 통해 IoT 센서의 안전성과 신뢰성을 향상시키는 데 도움을 줄 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.