• Title/Summary/Keyword: 고장해석

Search Result 533, Processing Time 0.026 seconds

Analysis of Motor Winding impact by inverter Switching Voltage Waveforms (인버터 스위칭전압 파형에 의한 전동기 권선 영향 해석)

  • 김종겸
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.1
    • /
    • pp.94-101
    • /
    • 1999
  • In this paper the problems associated with the switching surge of PWM inverter devices were analysed. As the application of ASD for efficient speed control of AC rmtors is increased, so is the rrntor and ASD-related failure increased. In the industrial rmtor awlications, the introduction of PWM drives can sometmes cause insulation breakdown between the phase windings due to high transient voltage peak. The motor cable length combined with the high switching frequency becomes more sensitive issue for proper drive operation. Effects of the cable length and high switching frequency influence both on rmtor and inverter. When the insulation level of rmtor winding is low, the failure probability caused by high peak voltage and fast voltage rise times(dv/dt) is high. Voltage refloctions are simulated far rmtor capacities, ASD and rise times and are presented graphically. The filtering techniques are discussed to reduce the rmtor terminal overvoltage and dv/dt in inverter fed AC rrntor drive systems. We confirmed that the lower motar capacity and rmtar insulation level, the shorter switching time and cable length and the higrer the probability of insulation breakdown .kdown .

  • PDF

Two-Layer Approach Using FTA and BBN for Reliability Analysis of Combat Systems (전투 시스템의 신뢰성 분석을 위한 FTA와 BBN을 이용한 2계층 접근에 관한 연구)

  • Kang, Ji-Won;Lee, Jang-Se
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.3
    • /
    • pp.333-340
    • /
    • 2019
  • A combat system performs a given mission enduring various threats. It is important to analyze the reliability of combat systems in order to increase their ability to perform a given mission. Most of studies considered no threat or on threat and didn't analyze all the dependent relationships among the components. In this paper, we analyze the loss probability of the function of the combat system and use it to analyze the reliability. The proposed method is divided into two layers, A lower layer and a upper layer. In lower layer, the failure probability of each components is derived by using FTA to consider various threats. In the upper layer, The loss probability of function is analyzed using the failure probability of the component derived from lower layer and BBN in order to consider the dependent relationships among the components. Using the proposed method, it is possible to analyze considering various threats and the dependency between components.

Analysis on the Effects of TRV and MOV in Real System with TCSC (TCSC가 적용된 실계통 시스템에서의 TRV와 MOV의 영향에 대한 분석)

  • Lee, Seok-Ju
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.2
    • /
    • pp.41-46
    • /
    • 2019
  • The application of series compensator in a power system affects other devices such as circuit breakers transient recovery voltage (TRV) problem. In this paper, we analyze the TRV effect on a line circuit breaker in the cases with and without thyristor-controlled series capacitor (TCSC) via simulation, and suggest an effective method to overcome the increase of TRV due to the TCSC installation. It also discusses the impact of proposed protection on metal oxide varistor (MOV). A 345 kV transmission line in Korea was selected as a study case. Grid system was modelled using PSCAD (Power Systems Computer Aided Design) / EMTDC(Electro Magnetic Transient Direct Current). The TRV was analyzed by implementing a short circuit fault along the transmission line and at the breaker terminal. The proposed protection scheme, the TRV satisfies the standard. However, the MOV energy capacity increased as the delay time increased. This result can solve the TRV problem caused by the expected transmission line fault in a practical power system.

Efficient Vibration Analysis of Stadium Stands (경기장 관람석의 효율적인 진동해석)

  • 김기철;이동근
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.2
    • /
    • pp.293-303
    • /
    • 2002
  • Recently, the use of the high strength materials and development of construction techniques have resulted in more flexible and longer spanning in the stadium systems. So the natural frequency of stadium structures are became low. Stadium stand could be led to significant dynamic response as like resonance due to spectator rhythmical activities. The accurate analysis of dynamic behavior of stadium systems and the precise investigation of the dynamic loads on stadium structures are demanded for effective design. It is desirable to apply measured dynamic loads created by spectator activities because these dynamic loads are not easy to express numerical formula. As the floor mesh of stadium stand is refined, the number of divided elements increases in numerical analysis. the rise of the number of elements makes the numbers of nodal points increased and numerous computer memory required. So it is difficult to analysis refine full model of stadium structures by using the commercial programs. In this study, the various dynamic loads induced by spectator movements are measured and analyzed. And a new modeling method that reduce the nodal points are introduced. Vibration analysis of stadium stands is executed to inspect accuracy and efficiency of proposed method in this paper.

Development of the Accelerated Life Test Method & Life Test Equipment for the Counterweight of the Construction Machinery (건설기계용 카운터웨이트 시험장비 및 가속수명시험법 개발)

  • Lee, Gi-Chun;Lee, Young-Bum;Choi, Byung-Oh;Kang, Bo-Sik;Kim, Do-Sik;Choi, Jong-Sik;Kim, Jae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.12
    • /
    • pp.1275-1280
    • /
    • 2015
  • A large-sized exciter that vibrates a two-ton component is required to simulate the field operating conditions of a counterweight of an excavator. However, it is difficult for a small-medium sized company to obtain a large exciter for the life test of a counterweight which is an equivalent counterbalancing weight that balances a load. Therefore, in this study, we developed life test equipment for evaluating the reliability of construction machinery weighing about two tons. It simulates the field operating conditions using rotational vibrators consisting of electric motors. A failure analysis of the counterweight was also performed for the major components. Field data acquired from various sites were applied to the life test design of the counterweight. Finally, a zero-failure qualification test based on the accelerated life test was designed, and there was no failure during the test, which guarantees a life of $B_5$ 10,000 hours.

A Study on the Air Vent Valve of the Hydraulic Servo Actuator for Steam Control of Power Plants (발전소의 스팀제어용 유압서보 액추에이터의 공기배출 밸브에 관한 연구)

  • Lee, Yong Bum;Lee, Jong Jik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.6
    • /
    • pp.397-402
    • /
    • 2016
  • To produce adequate electricity in nuclear and thermal power plants, an optimal amount of steam should be supplied to a generator connected to high- and low-pressure steam turbines. A turbine output control device, which is a special steam valve employed to supply or interrupt the steam to the turbine, is operated using a hydraulic servo actuator. In power plants, the performance of servo actuators is degraded by the air generated from the hydraulic system, or causes frequent failures owing to an increase in the wear of the seal. This is due to the seal being burnt as generated heat using the produced compressed air. Some power plants have exhausted air using a fixed orifice, and thus they encounter power loss due to mass flow exhaust. Failures are generated in hydraulic pumps, electric motors, and valves, which are frequently operated. In this study, we perform modeling and analysis of the load-sensing air-exhaust valves, which can be passed through very fine flow under normal use conditions, and exhaust mass flow air at the beginning stage as with existing fixed orifices. Then, we propose a method to prevent failures due to the compressed air, and to ensure the control accuracy of hydraulic servo actuators.

ATM 교환기 연결 절단율 추정을 위한 시뮬레이터 개발

  • 정명기;고재상;최성훈
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1997.04a
    • /
    • pp.65-65
    • /
    • 1997
  • 가입자가 B-ISDN(Broadband Integrated Services Digital Network) 서비스에 대한 shb은 수준의 품질 및 안정적인 서비스 제공을 요구함에 따라, 이러한 서비스를 제공하기 위한 ATM (Asynchronous Transfer Mode) 교환기에 대한 신뢰성 설계의 중요성은 증가하 고 있다. 교환기의 중요한 신뢰성 성능 척도 중의 하나인 연결 절단율 (Cutoff connection rate)은 총 연결시간 동안 절단된 연결수로 정의되며, 연결 절단은 호 설정 (Call setup) 단 계를 지나 서비스 중인 연결이 사용자의 요구가 아닌 시스템의 고장으로 종료될 때 발생한 다. 연결 절단율 추정 문제는 기존의 신뢰도 또는 가용도 예측을 위한 시뮬레이션과는 달리 시스템 구성 유니트들의 고장율, 수리율, 그리고 요구된 연결의 트래픽 특성 부분이 혼합된 문제이다. 따라서, B-ISDN 서비스의 중요한 특징인 다양한 트래픽 특성과 시스템의 구성 (Configuration)을 고려하여 연결 절단율을 해석적인 방법을 통하여 추정하는 데네는 어려 움이 있으며 시뮬레이션에 의한 방법이 적절하다. 본 고에서는 B-ISDN 서비스의 트래픽 특 성과 ATM 교환기의 시스템 구성 및 신뢰도 데이터로부터 시스템의 연결 절단율을 추정하 기 위한 시뮬레이터의 기능 및 구조, 시뮬레이션 수행 결과 등을 제시한다. 시뮬레이터는 AweSim 시뮬레이션과 CUser Written Code를 사용하여 개발하였다. 시뮬레이터의 구성 모듈은 크게 호 도착 모듈, 연결 제어 및 자원 할당 모듈, 유니트 고장 및 수리 모듈, 통계 량 수집 모듈 등으로 구성된다. 개발된 시뮬레이터는 B-ISDN 트래픽 파라메터와 연결 절단 율의 상호 관계 규명 및 시스템 설계 대안 (Design alternatives)에 대한 비교/평가에 활용 된다., 수중생물의 경우는 특히 수온, 수량 영양원등이다.(중략). 본 연구의 접근방법으로는 ASRS의 개념적인 Reference Model을 수립하고 이 Reference Model에 대한 Formal Model로 DEVS(Discrete Event System Specification)을 이용하여 시스템을 Modeling하였다. 이의 Computer Simulation을 위하여 DEVS형식론 환경에서의 Simulation Language인 DEVSim ++ⓒ를 이용하여 시스템을 구현하였다.. 실형 결과로는 먼저 선형 상미분방정식의 예로 mass-damper-spring system, 비선형 상미분방정식의 예로는 van der Pol 방정식, 연립 상미분방정식의 예로는 mixing tank problem 등을 보였으며, 그의 공학에서 일어나는 여러 가지 문제들도 다루었다.화물에 대한 방어력이 증가되어 나타난 결과로 여겨지며, 또한 혈청중의 ALT, ALP 및 LDH활성을 유의성있게 감소시키므로서 감잎 phenolic compounds가 에탄올에 의한 간세포 손상에 대한 해독 및 보호작용이 있는 것으로 사료된다.반적으로 홍삼 제조시 내공의 발생은 제조공정에서 나타나는 경우가 많으며, 내백의 경우는 홍삼으로 가공되면서 발생하는 경우가 있고, 인삼이 성장될 때 부분적인 영양상태의 불충분이나 기후 등에 따른 영향을 받을 수 있기 때문에 앞으로 이에 대한 많은 연구가 이루어져야할 것으로 판단된다.태에도 불구하고 [-wh]의미의 겹의문사는 병렬적 관계의 합성어가 아니라 내부구조를 지니지 않은 단순한 단어(minimal $X^{0}$ elements)로 가정한다. 즉, [+wh] 의미의 겹의문사는 동일한 구성요 소를 지닌 병렬적 합성어([$[W1]_{XO-}$ $[W1]_{XO}$ ]$_{XO}$

  • PDF

A Study on Quality Improvement through Analysis of Hub-reduction Failure Occurrence Mechanism for Military Vehicles (군용차량 허브리덕션 고장 메커니즘 분석을 통한 품질개선 연구)

  • Kim, Sung-Gon;Kim, Seon-Jin;Yun, Seong-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.188-196
    • /
    • 2021
  • For the tactical vehicles operated by the Korean army, the hub-reduction portal axle was applied considering Korea's topographical characteristics. Hub-reduction was applied to a Korean military vehicle to increase the vehicle body to secure ground clearance and improve the driving capability on rough roads, such as unpaved and field land by increasing the torque. The Korean military is operating tactical vehicles after various performance tests, including durability driving, but wheel damage occurred in one of the vehicles operating in the front units. Failure analysis revealed many damaged parts, including the hub, making it difficult to determine the cause. Therefore, an analysis of the failure occurrence mechanism for each damaged part was conducted, which confirmed that the cause of wheel breakage was a hub. Furthermore, the root cause of the hub breakage was a crack due to internal pores and foreign matters. In addition, a realistic improvement plan that can be applied throughout the design, manufacture, and shipping stages was presented using the fishbone diagram analysis. The derived improvement plan was verified through unit performance tests, including CAE and actual vehicle tests, and by reflecting this, the driving safety of Korean tactical vehicles was improved. Finally, it is expected that the proposed method for analyzing the failure occurrence mechanism will be used as reference material when analyzing the quality problems of similar military vehicles in the future.

Analysis of Motor-Current Spectrum for Fault Diagnosis of Induction Motor Bearing in Desulfurization Absorber (탈황 흡수탑 유도전동기 베어링 결함 진단을 위한 전류 스펙트럼 해석)

  • Bak, Jeong-Hyeon;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.11 no.2
    • /
    • pp.39-44
    • /
    • 2015
  • According to a research that is based on a previous study, But in a different way, This study shows fault diagnosis of Induction motor bearing which runs in coal-fired power plant industries on Desulfurization absorber agitator using Spectrum analysis of Stator Current and visual inspection. As a result of harmonic content analysis of stator current spectrum, It was possible to detect ball and outer race fault frequency. The comparison in the context of this experiment proves that the amplitude of faulty frequency is increased in three times at a fault in ball and in outer race. Spectrum analysis of stator current can be used to detect the presence of a fault condition as well as experiment in faulty bearings, besides early fault detection in bearings can prevent unexpected power generation loss and emergency maintenance cost.

  • PDF

CCT Analysis of Power System Connected to DFIG Wind Turbine (DFIG 풍력터빈이 연계된 전력계통의 CCT 영향분석)

  • Seo, Gyu-Seok;Park, Ji-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2388-2392
    • /
    • 2013
  • Wind generation systems are very different in nature from conventional generation systems. Therefore it is necessary to research dynamic characteristics of wind generation systems connected to a power system. The stability analysis of wind turbine generator is an important issue in the operation of the power system. The result of angular stability of the power system that consists of only synchronous generators is different from that of the power system including wind turbine generators. This is due to the fact that generators connected to wind turbines are generally induction generators. The angular stability assessing synchronization of generators is determined by its corresponding critical clearing time(CCT). Wind turbine models for the analysis of power system are varied and difficult to use, but now these are standardized into four types. In this paper, the analysis of the CCT of the power system connected to wind farm considering the location and capacity is performed by using DFIG(Doubly-Fed induction Generator) wind turbine built-in type3 model in PSS/E-32.