• Title/Summary/Keyword: 고장예지

Search Result 75, Processing Time 0.02 seconds

A Study on Fault Prediction Method in a Pump Tower of LNG FPSO (LNG FPSO 펌프타워 고장 예지 방안에 관한 연구)

  • Kim, Yongjae;Cho, SangJe;Jun, Hong-Bae;Ha, Chunghun;Shin, Jongho
    • Korean Journal of Computational Design and Engineering
    • /
    • v.21 no.2
    • /
    • pp.111-121
    • /
    • 2016
  • The plant equipment usually has a long life cycle. During its O&M (Operation & Maintenance) phase, since the occurrence of an accident of offshore plant equipment causes catastrophic damage, it is necessary to make more efforts for managing critical offshore equipment. Nowadays due to the emerging ICTs (Information Communication Technologies) and sensor technologies, it is possible to gather the health status data of important offshore equipment and their environment data, which leads to much concern on CBM (Condition-Based Maintenance). In this study, we will propose an approach to estimate the remaining lifetime of an offshore plant equipment (pump tower) based on gathered ocean environment data.

A Signal Processing Technique for Predictive Fault Detection based on Vibration Data (진동 데이터 기반 설비고장예지를 위한 신호처리기법)

  • Song, Ye Won;Lee, Hong Seong;Park, Hoonseok;Kim, Young Jin;Jung, Jae-Yoon
    • The Journal of Society for e-Business Studies
    • /
    • v.23 no.2
    • /
    • pp.111-121
    • /
    • 2018
  • Many problems in rotating machinery such as aircraft engines, wind turbines and motors are caused by bearing defects. The abnormalities of the bearing can be detected by analyzing signal data such as vibration or noise, proper pre-processing through a few signal processing techniques is required to analyze their frequencies. In this paper, we introduce the condition monitoring method for diagnosing the failure of the rotating machines by analyzing the vibration signal of the bearing. From the collected signal data, the normal states are trained, and then normal or abnormal state data are classified based on the trained normal state. For preprocessing, a Hamming window is applied to eliminate leakage generated in this process, and the cepstrum analysis is performed to obtain the original signal of the signal data, called the formant. From the vibration data of the IMS bearing dataset, we have extracted 6 statistic indicators using the cepstral coefficients and showed that the application of the Mahalanobis distance classifier can monitor the bearing status and detect the failure in advance.

Implementation of Responsive Web-based Vessel Auxiliary Equipment and Pipe Condition Diagnosis Monitoring System (반응형 웹 기반 선박 보조기기 및 배관 상태 진단 모니터링 시스템 구현)

  • Sun-Ho, Park;Woo-Geun, Choi;Kyung-Yeol, Choi;Sang-Hyuk, Kwon
    • Journal of Navigation and Port Research
    • /
    • v.46 no.6
    • /
    • pp.562-569
    • /
    • 2022
  • The alarm monitoring technology applied to existing operating ships manages data items such as temperature and pressure with AMS (Alarm Monitoring System) and provides an alarm to the crew should these sensing data exceed the normal level range. In addition, the maintenance of existing ships follows the Planned Maintenance System (PMS). whereby the sensing data measured from the equipment is monitored and if it surpasses the set range, maintenance is performed through an alarm, or the corresponding part is replaced in advance after being used for a certain period of time regardless of whether the target device has a malfunction or not. To secure the reliability and operational safety of ship engine operation, it is necessary to enable advanced diagnosis and prediction based on real-time condition monitoring data. To do so, comprehensive measurement of actual ship data, creation of a database, and implementation of a condition diagnosis monitoring system for condition-based predictive maintenance of auxiliary equipment and piping must take place. Furthermore, the system should enable management of auxiliary equipment and piping status information based on a responsive web, and be optimized for screen and resolution so that it can be accessed and used by various mobile devices such as smartphones as well as for viewing on a PC on board. This update cost is low, and the management method is easy. In this paper, we propose CBM (Condition Based Management) technology, for autonomous ships. This core technology is used to identify abnormal phenomena through state diagnosis and monitoring of pumps and purifiers among ship auxiliary equipment, and seawater and steam pipes among pipes. It is intended to provide performance diagnosis and failure prediction of ship auxiliary equipment and piping for convergence analysis, and to support preventive maintenance decision-making.

Smart Monitoring System to Improve Solar Power System Efficiency (태양광 발전시스템 효율향상을 위한 스마트 모니터링 시스템)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.1
    • /
    • pp.219-224
    • /
    • 2019
  • The number of solar power installation companies including domestic small scale (50kW or less) is increasing rapidly, but the efficient operation system and management are insufficient. Therefore, a new type of operating system is needed as a maintenance management aspect to maximize the generation amount in the current state rather than the additional function which causes the increase of the generation cost. In this paper, we utilize Big Data and sensor network to maximize the operating efficiency of solar power plant and analyze the expert system to develop power generation prediction technology, module unit fault detection technology, life prediction of inverter components and report technology, maintenance optimization And to develop a smart monitoring system that enables optimal operation of photovoltaic power plants such as development of algorithms and economic analysis.

A Study on Predictive Preservation of Equipment Management System with Integrated Intelligent IoT (지능형 IoT를 융합한 장비 운용 시스템의 예지 보전을 위한 연구)

  • Lee, Sang-Deok;Kim, Young-Gon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.6
    • /
    • pp.83-89
    • /
    • 2022
  • Internet of Things technology is rapidly developing due to the recent development of information and communication technology. IoT technology utilizes various sensors to generate unique data from each sensor, enabling diagnosis of system status. However, the equipment management system currently in effect is a post-preservation concept in which administrators must deal with the problem after the problem occurs, which could mean system reliability and availability problems due to system errors, and could result in economic losses due to negative productivity disruptions. Therefore, this study confirmed that edge controller control decision algorithms for more efficient operation of rectifiers in the factory by applying intelligent IoT (AIoT) technology and domain knowledge-based modeling for each sensor data collected based on this, outputting appropriate status messages for each scenario.