본 논문에서는 25%, 50%, 75%, 100% 정격 부하 아래에서 b유도전동기의 회전자 고장을 검출하기 위한 효과적인 FFT 기반 알고리즘을 제안하였다. 제안한 방법은 고정자 전류 스펙트럼 성분 중에서 회전자 고장에 큰 영향을 주는 주파수 성분에서 미리 결정한 기준벡터와 특정벡터 사이의 평균 절대치 차이(Mean Absolute Difference)를 이용하였다. 기준벡터는 정상 상태의 고정자 전류 스펙트럼 성분 중에서 기본 주파수 상, 하의 두개의 측파대 주변의 좁은 영역에서 추출하였고 특징벡터는 정상상태와 회전자 바 고장상태의 고정자 전류 스펙트럼 성분 중에서 또한 기준벡터와 동일한 영역에서 추출하였다. 부하실험을 통하여 제안한 알고리즘의 적용 결과는 각각의 정격 부하에서 유도전동기의 회전자 바 고장을 효과적으로 검출할 수 있음을 입증하였다.
Journal of the Institute of Electronics Engineers of Korea SC
/
v.48
no.1
/
pp.31-38
/
2011
Faults of motor drive systems to be used for various industrial applications can cause serious problems. In this paper, a method to diagnose switch open fault of a voltage-fed PWM inverter is proposed. The proposed method normalizes dq current and fault-detection and first classification are performed by mean values of dq phase currents, second classification is performed by features such as the relation of dq phase currents, the ranges of those, the positions of those according to the results, and fault switch is diagnosed with the results. The proposed method performs the simulation for diagnosis of inverter switch open faults with MATLAB and identifies the feasibility of the proposed method. Because the proposed method is implemented by simple algorithms, the proposed algorithm can be embedded in general induction motor drive systems and be used.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.19
no.1
/
pp.29-35
/
2019
As the fourth industrial revolution is emerging, many companies are increasingly interested in smart factories and the importance of sensors is being emphasized. In the case that sensors for collecting sensing data fail, the plant could not be optimized and further it could not be operated properly, which may incur a financial loss. For this purpose, it is necessary to diagnose the status of sensors to prevent sensor' fault. In the paper, we propose a scheme to diagnose digital-sensor' fault by analyzing the rising time and falling time of digital sensors through the LSTM(Long Short Term Memory) of Deep Learning RNN algorithm. Experimental results of the proposed scheme are compared with those of rule-based fault diagnosis algorithm in terms of AUC(Area Under the Curve) of accuracy and ROC(Receiver Operating Characteristic) curve. Experimental results show that the proposed system has better and more stable performance than the rule-based fault diagnosis algorithm.
Journal of the Institute of Convergence Signal Processing
/
v.21
no.3
/
pp.121-126
/
2020
Sound-based machine fault diagnosis is the automatic detection of abnormal sound in the acoustic emission signals of the machines. Conventional methods of using mathematical models were difficult to diagnose machine failure due to the complexity of the industry machinery system and the existence of nonlinear factors such as noises. Therefore, we want to solve the problem of machine fault diagnosis as a deep learning-based image classification problem. In the paper, we propose a CNN-based automatic machine fault diagnosis method using Spectrogram images. The proposed method uses STFT to effectively extract feature vectors from frequencies generated by machine defects, and the feature vectors detected by STFT were converted into spectrogram images and classified by CNN by machine status. The results show that the proposed method can be effectively used not only to detect defects but also to various automatic diagnosis system based on sound.
Korean Journal of Air-Conditioning and Refrigeration Engineering
/
v.22
no.10
/
pp.687-696
/
2010
In this study, FDD algorithm was developed using the normalized distance method and general pattern classifier method that can be applied to constant air volume air handling unit(CAV AHU) system. The simulation model using TRNSYS and EES was developed in order to obtain characteristic data of CAV AHU system under the normal and the faulty operation. Sensitivity analysis of fault detection was carried out with respect to fault progress. When differential pressure of mixed air filter increased by more than about 105 pascal, FDD algorithm was able to detect the fault. The return air temperature is very important measurement parameter controlling cooling capacity. Therefore, it is important to detect measurement error of the return air temperature. Measurement error of the return air temperature sensor can be detected at below $1.2^{\circ}C$ by FDD algorithm. FDD algorithm developed in this study was found to indicate each failure modes accurately.
This paper describes a fault detection and diagnosis (FDD) system developed for the heat source apparatus in building air-conditioning system. As HVAC&R systems in building become complex and instrumented with highly automated controllers, the processes and systems get more difficult for the operator to understand and detect the mal-functions. Poorly maintained, degraded, and improperly controlled equipment wastes an estimated 15% to 30% of energy used in commercial building. When operating a complex facility, FDD system is beneficial in equipment management to provide the operator with tools which can help in decision making for recovery from a failure of the system. Automated FDD for HVAC&R system has the potential to reduce energy and maintenance costs and improves comfort and reliability. Over the last decade there has been considerable research for developing FDD system for HVAC&R equipment. However, they are being made too much of a theoretical study, so only a small of FDD methods are deployed in the field. This study deduced an actual defect source for the heat source apparatus and suggested a low price FDD method which is ready to be deployed in the field.
Journal of the Korean Society for Aeronautical & Space Sciences
/
v.40
no.12
/
pp.1040-1047
/
2012
This paper presents a fault diagnosis algorithm of control surfaces of small fixed-wing aircraft to reduce maintenance cost or to improve repair efficiency by estimation of fault occurrence or part replacement periods. The proposed fault diagnosis algorithm consists of ANPSD (Averaged Normalized Power Spectral Density), PCA (Principle Component Analysis), and GC (Geometric Classifier). ANPSD is used for frequency-domain vibration testing. PCA has advantage to extract compressed information from ANPSD. GC has good properties to minimize errors of the fault detection and isolation. The algorithm was verified by the accelerometer measurements of the scaled normal and faulty ailerons and the test results show that the algorithm is suitable for the detection and isolation of the control surface faults. This paper also proposes solutions for some kind of implementation problems.
Korean Journal of Air-Conditioning and Refrigeration Engineering
/
v.16
no.9
/
pp.872-880
/
2004
The fault detection and diagnosis technology may be applied in order to decrease the energy consumption and the maintenance cost of the air-conditioning system. In this study, an air handling unit fault test apparatus was built and fault diagnosis algorithms were applied to diagnose various faults of an air handling unit. Test results showed the good diagnosis for applied faults. Therefore, these algorithms may be effectively used to develope the real time fault detection and diagnosis system for the air handling unit.
Korean Journal of Air-Conditioning and Refrigeration Engineering
/
v.13
no.12
/
pp.1288-1296
/
2001
A scheme for on-line fault detection and diagnosis of an air-handling unit is presented. The fault detection scheme uses residuals which are generated by comparing each measurement with analytical redundancies computed from the reference models. In this paper, artificial neural networks (ANNs) are used to estimate analytical redundancy and to classify faults. The Lebenburg-Marquardt algorithm is used to train feed forward ANNs that provide estimates of continuous states and diagnosis results. The simulation result demonstrated that the ANNs can effectively detect and diagnose faults in the highly non-linear and complex HVAC systems.
Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
/
v.18
no.4
/
pp.104-111
/
2004
In this paper, we propose a diagnosis algorithm to detect faults of induction motor using LDA First, after reducing the input dimension of a current value measured by experiment at each period using PCA method, we extract characteristic vectors for each fault using LDA Next, we analyze the driving condition of an induction motor using the Euclidean distance between a precalculated characteristic vector and an input vector. Finally, from the experiments under various noise conditions showing the properties of the LDA method, we obtained better results than the case of using the PCA method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.