• 제목/요약/키워드: 고유 공간 모델

검색결과 113건 처리시간 0.02초

얼굴 애니메이션을 위한 직관적인 유사 고유 얼굴 모델 (Intuitive Quasi-Eigenfaces for Facial Animation)

  • 김익재;고형석
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제12권2호
    • /
    • pp.1-7
    • /
    • 2006
  • 블렌드 쉐입 기반 얼굴 애니메이션을 위해 기저 모델(Expression basis)을 생성하는 방법을 크게 두 가지로 구분하면, 애니메이터가 직접 모델링을 하여 생성하는 방법과 통계적 방법에 기초하여 모델링하는 방법이 있다. 그 중 애니메이터에 의한 수동 모델링 방법으로 생성된 기저 모델은 직관적으로 표정을 인식할 수 있다는 장점으로 인해 전통적인 키프레임 제어가 가능하다. 하지만, 표정 공간(Expression Space)의 일부분만을 커버하기 때문에 모션데이터로부터의 재복원 과정에서 많은 오차를 가지게 된다. 반면, 통계적 방법을 기반으로 한 기저모델 생성 방법은 거의 모든 표정공간을 커버하는 고유 얼굴 모델(Eigen Faces)을 생성하므로 재복원 과정에서 최소의 오차를 가지지만, 시각적으로 직관적이지 않은 표정 모델을 만들어 낸다. 따라서 본 논문에서는 수동으로 생성한 기저모델을 유사 고유 얼굴 모델(Quasi-Eigen Faces)로 변형하는 방법을 제시하고자 한다. 결과로 생성되는 기저 모델은 시각적으로 직관적인 얼굴 표정을 유지하면서도 통계적 방법에 의한 얼굴표정 공간의 커버 영역과 유사하도록 확장할 수 있다.

  • PDF

모델차수축소법을 이용한 프리스트레스 구조물의 효율적인 고유진동해석 (Efficient Modal Analysis of Prestressed Structures via Model Order Reduction)

  • 한정삼
    • 대한기계학회논문집A
    • /
    • 제35권10호
    • /
    • pp.1211-1222
    • /
    • 2011
  • 일반적으로 회전체나 초기 하중 하의 구조물 또는 열변형된 파이프 등의 프리스트레스 구조물은 이러한 프리스트레스 효과로 인하여 고유진동수 및 고유진동모드가 변화되기 때문에 정확한 고유진동해석을 위해서는 프리스트레스 고유진동해석을 수행해야 한다. 시스템에 따라서는 그 복잡성으로 인하여 수십만~수백만의 큰 자유도를 갖는 대형 유한요소모델이 요구되어 이러한 대형 모델의 프리스트레스 영향을 파악하기 위한 프리스트레스 고유진동해석을 주어진 설계시간 내에 반복적으로 수행하기에는 여전히 시간적 어려움이 많은 형편이다. 따라서, 본 논문에서는 크리로프 부공간에 근거한 축소기법으로 시스템의 초기 유한요소모델에 대하여 고유진동 특성을 정확하게 나타내면서도 작은 차수의 축소모델로 표현하여 프리스트레스 고유진동해석에서의 계산시간 문제를 감소하였다. 초기 시스템과 축소 시스템의 모멘트를 일치하는 수치계산에는 아놀디 과정을 이용하였다. 적용예제로 휠과 컴프레서 임펠러를 선택하여 제안한 방법을 통한 회전에 따른 프리스트레스 고유진동해석의 정확성과 효율성을 보였다.

분리된 고유공간을 이용한 잡음환경에 강인한 특징 정규화 기법 (Robust Feature Normalization Scheme Using Separated Eigenspace in Noisy Environments)

  • 이윤재;고한석
    • 한국음향학회지
    • /
    • 제24권4호
    • /
    • pp.210-216
    • /
    • 2005
  • 본 논문에서는 잡음에 강인한 음성인식을 위하여 고유공간에 기반을 둔 새로운 특징 정규화 기법을 제안한다. 일반적으로 평균과 분산의 정규화 (MVN)는 켑스트럼 상에서 수행된다. 그러나 최근에 고유공간을 이용한 MVN기법이 소개되었고, 그 고유공간 정규화 기법에서는 하나의 고유공간을 이용하였다. 이 과정에는 켑스트럼 상의 특징 벡터를 선형 주성분 분석 (PCA)행렬을 통하여 고유공간으로 변환시킨 후 MVN을 수행하는 과정이 포함된다. 이 방법에서는 전체 39차의 특징분포를 하나의 고유공간으로 표현하였다. 그러나 이 기법의 경우 전체 특징 분포를 표현함에 세밀함이 떨어지기 때문에 더욱 세밀한 분포의 표현을 위해 본 논문에서는 static 특징, 1차 미분 계수, 2차 미분계수에 각각 유일하고 독립적인 분리된 고유공간을 적용하는 것을 제안하였다. 또한 고유공간에서 정규화 된 훈련 데이터를 이용하여 모델을 만든다. 마지막으로 훈련 데이터의 분포와 잡음환경에서의 테스트 데이터의 분포 특성의 차이를 줄이기 위해 켑스트럼 상에서의 회전 기법을 적용시킨다. 그 결과, 기본적인 고유공간 정규화 기법보다 향상된 성능을 얻을 수 있었다.

점진적인 주성분분석기법을 이용한 고차원 자료의 특징 추출 (Feature Extraction on High Dimensional Data Using Incremental PCA)

  • 김병주
    • 한국정보통신학회논문지
    • /
    • 제8권7호
    • /
    • pp.1475-1479
    • /
    • 2004
  • 고차원 자료를 효율적으로 처리하기 위해서는 특징 추출 기법이 필요하다. 주성분분석 방법은 대표적인 특징추출 방법이지만 학습 자료의 차원이 큰 경우에는 고유공간을 계산하기 위해 많은 기억공간과 계산량을 필요로 한다. 본 논문에서는 고차원 자료의 특징 추출을 위해 점진적인 주성분분석 방법을 사용한다. 제안한 방법에 대해 신경망에서 점진적인 주성분분석을 하는 대표적인 방법인 APEX모델과 실험을 통해 비교해 본 결과 제안된 방법이 APEX 모델 보다 성능이 우수함을 나타내었다.

가버 특징 벡터 조명 PCA 모델 기반 강인한 얼굴 인식 (Robust Face Recognition based on Gabor Feature Vector illumination PCA Model)

  • 설태인;김상훈;정선태;조성원
    • 전자공학회논문지SC
    • /
    • 제45권6호
    • /
    • pp.67-76
    • /
    • 2008
  • 성공적인 상업화를 위해서는 다양한 조명 환경에서 신뢰성 있는 얼굴 인식이 필요하다. 특징 벡터 기반 얼굴 인식에서 특징 벡터를 잘 선택하는 것은 중요하다. 가버 특징 벡터는 다른 특징 벡터보다도 상대적으로 방향, 자세, 조명 등의 영향을 덜 받는 것으로 잘 알려져 있어 얼굴 인식의 특징 벡터로 많이 이용된다. 그러나 조명의 영향에 대해 완전히 독립적이지 못하다. 본 논문에서는 얼굴 이미지의 가버 특징 벡터에 대한 조명 PCA 모델의 구성을 제안하고 이를 이용하여 조명에 독립적인 얼굴 고유의 특성을 나타내는 가버 특징 벡터만을 분리해내고 이를 이용한 얼굴 인식 방법을 제시한다. 가버 특징 벡터 조명 PCA 모델은 가버 특징 벡터공간을 조명 영향 부분공간과 얼굴 고유특성 부분공간의 직교 분해로 구성한다. 얼굴 고유특성 부분공간으로 투영하여 얻어진 가버 특징 벡터는 조명 영향을 분리해 내었기 때문에 이를 이용한 얼굴 인식은 조명에 보다 강인하게 된다. 실험을 통해서 가버 특징 벡터 조명 PCA 모델을 이용한 제안된 얼굴 인식 방식이 다양한 자세에서 조명에 대해 보다 신뢰성 있게 동작함을 확인하였다.

다수의 고유 공간을 이용한 주화 표면 품질 진단 (Inspection of Coin Surface Defects using Multiple Eigen Spaces)

  • 김재민;류호진
    • 한국콘텐츠학회논문지
    • /
    • 제11권3호
    • /
    • pp.18-25
    • /
    • 2011
  • 현재 주화의 제조 공정에서는 주화의 표면 품질 진단을 사람이 눈으로 직접 확인하여 수행하고 있다. 본 논문은 컨베이어 벨트에 놓이어 이동하는 주화로부터 획득한 영상을 이용하여 주화 표면의 결함을 검출하는 영상처리 방법을 제시한다. 결함 검출 방법은 영상에서 주화 영역을 분할하고, 분할된 동전을 비교할 모델에 정렬하며, 정렬된 영상을 최적의 고유 영상 공간으로 투영, 투영 오차와 학습된 가변 임계값과 비교하여 결함 부위를 검출한다. 본 논문에서는 이러한 일련의 영상처리 과정 중에서 주화 표면 진단과 관련하여 특화된 새로운 방법을 제시한다. 주화의 정렬을 위하여 분할된 주화의 히스토그램을 사용한다. 이 방법은 2차원 영상의 정렬을 일차원 히스토그램의 정렬로 변환하는 것이다. 다음으로 정렬된 영상을 고유 영상공간에 투영시켜 주화 방향에 따른 휘도 변화를 보정한다. 이 방법은 소수의 고유 영상 벡터들로 구성된 고유 영상 공간을 여러 개 생성하고, 최적의 고유 영상 공간에 정렬된 영상을 투영하여 실시간 구현이 가능하게 한다.

조명분리 고유얼굴에 기반한 조명에 강인한 얼굴 인식 (Illumination-Robust Face Recognition based on Illumination-Separated Eigenfaces)

  • 설태인;정선태;조성원
    • 한국콘텐츠학회논문지
    • /
    • 제9권2호
    • /
    • pp.115-124
    • /
    • 2009
  • 얼굴 인식 방법 중 인기 있는 고유얼굴 기반 얼굴 인식 방법은 훈련 얼굴 이미지 세트에 대해 PCA를 적용하여 얻어진 고유얼굴을 이용한다. 따라서 훈련 얼굴 이미지들의 조명들과 다른 조명의 환경들에서는 신뢰성 있는 성능을 얻기 어렵다. 본 논문에서는 조명의 영향을 배제한 조명분리 고유얼굴 기반 얼굴 인식 방법을 제안한다. 제안된 방법은 얼굴 모델 이미지 세트의 고유얼굴 공간을 구성된 얼굴 조명 부분공간에 대해 직교 분해하여 얻은 조명분리 고유얼굴들을 이용한다. 실험을 통해서 조명분리 고유얼굴에 기반하는 제안된 얼굴 인식 방법이 기존 고유얼굴 기반 얼굴 인식 방법보다 조명의 영향에 보다 강인함을 확인하였다.

초기 불완전성을 고려한 공간 트러스의 분기좌굴과 라이즈-스팬 비에 따른 임계하중 특성 (Characteristics of Buckling Load and Bifurcation in Accordance with Rise-span Ratio of Space Truss Considering Initial Imperfection)

  • 이승재;손수덕
    • 한국강구조학회 논문집
    • /
    • 제24권3호
    • /
    • pp.337-348
    • /
    • 2012
  • 본 연구는 초기조건에 민감한 공간 트러스를 대상으로 불완전성으로 인한 분기거동 및 불안정 특성에 대해서 연구하였으며, 접선강성행렬의 행렬식과 고유치해석으로 임계점과 좌굴하중을 구하였다. 고유모드의 민감성에 의한 불안정 현상을 고찰하기 위해서 2-자유절점공간 트러스와 스타 돔 및 3링 돔 모델을 예제로 채택하였으며, 라이즈-스팬 비 및 하중 파라메타에 따른 좌굴하중의 영향을 분석하였다. 2-자유절점 모델의 초기 형상불완전성에 따른 민감성은 고유모드에 따라 임계 후 평형경로가 바뀌었으며, 좌굴하중은 불완전 량의 증가에 따라 감소하는 결과를 얻었다. 예제에서 나타난 두 가지 민감한 좌굴패턴은 자유절점의 변위 위치를 살펴봄으로서 설명할 수 있었고, 형상 불완전성에 따른 거동은 비대칭 고유모드가 가장 큰 영향을 주었다. 민감한 고유모드는 단순화한 모델의 비신장 메커니즘 기저와 유사하였다. 스타 돔 모델은 라이즈-스팬 비가 높을수록 전체좌굴보다는 국부좌굴이 우세하며, 하중 파라메타 값이 클수록 평형경로 상에 분기점이 발생하였다. 또한 스타돔과 3링 모델의 좌굴하중은 각각 극한점 하중레벨의 약 50-70% 및 80-90%로 나타났다.

2차원 PCA 얼굴 고유 식별 특성 부분공간 모델 기반 강인한 얼굴 인식 (Robust Face Recognition based on 2D PCA Face Distinctive Identity Feature Subspace Model)

  • 설태인;정선태;김상훈;장언동;조성원
    • 대한전자공학회논문지SP
    • /
    • 제47권1호
    • /
    • pp.35-43
    • /
    • 2010
  • 고유얼굴 기반 얼굴 인식 방법과 같은 얼굴 형태 기반 얼굴 인식 방법에 사용되는 1차원 PCA는 고차원의 얼굴 형태 데이터 벡터들의 처리로 인하여 부정확한 얼굴 표현과 과도한 계산량을 초래할 수 있다. 이에 개선 방안의 하나로 2차원 PCA 기반 얼굴 인식 방법이 개발되었다. 그러나 단순한 2차원 PCA 적용으로 얻어진 얼굴 표현 모델에는 얼굴 공통 특성 성분과 개인 식별 특성 성분이 모두 포함된다. 얼굴 공통 특성 성분은 오히려 개인 식별 능력을 방해할 수가 있고 또한 인식 처리 시간의 증가를 초래한다. 본 논문에서는 2차원 PCA 적용으로 얻어진 얼굴 특성 공간에서 얼굴 공통 특성 영향이 분리된 얼굴 고유 식별 특성 부분공간 모델을 개발하고 개발된 모델에 기반한 새로운 강인한 얼굴 인식 방법을 제안한다. 제안한 얼굴 고유식별 특성 부분공간 모델 기반 얼굴 인식 방법은 얼굴 고유 식별 특성에만 주로 의존하기 때문에 기존 1차원 PCA 및 2차원 PCA 기반 얼굴 인식 방법보다 얼굴 인식 성능 및 인식 속도에 대해서 더 우수한 성능을 보인다. 이는 다양한 조명 조건하에 다양한 얼굴 자세를 갖는 얼굴 이미지들로 구성된 Yale A 및 IMM 얼굴 데이터베이스를 이용한 실험을 통해 확인하였다.

수정된 커널 주성분 분석 기법의 분류 문제에의 적용 (Modified Kernel PCA Applied To Classification Problem)

  • 김병주;심주용;황창하;김일곤
    • 정보처리학회논문지B
    • /
    • 제10B권3호
    • /
    • pp.243-248
    • /
    • 2003
  • 본 논문에서는 학습 자료로부터 비선형 특징추출과 분류를 위한 점진적인 커널 주성분 분석 방법(IKPCA)을 제안한다. 일괄처리 방식의 커널 주성분 분석 방법은 학습 자료의 크기가 클 경우 과도한 계산량이 문제가 된다. 또한 새로 추가 되는 학습 자료가 있을 경우 고유벡터를 계산하기 위해 고유공간 전체를 다시 계산해야 하는 문제점이 있다. IKPCA는 이러한 문제점들을 고유공간 모델의 점진적인 계산과 경험 커널사상에 의해 해결하였다. IKPCA는 일괄처리방식의 커널 주성분 분석에 비해 기억공간 요구량에 있어 효율적이며 학습 자료의 재학습에 의해 성능을 쉽게 향상시킬 수 있다. 비선형 자료에 대한 실험을 통해 IKPCA는 일괄처리방식의 커널 주성분 분석 방법에 비해 특징추출과 분류 문제의 성능에 있어 유사한 결과를 나타내었다.