• Title/Summary/Keyword: 고온 크리프 특성

Search Result 56, Processing Time 0.051 seconds

Evaluation of the Mechanical Characteristics of the Large Stone Asphalt Mixtures (대입경 혼합물의 역학적 특성 평가)

  • Park, Tae-Sun;Kim, Ju-Won;Kim, Yong-Ju
    • International Journal of Highway Engineering
    • /
    • v.2 no.2
    • /
    • pp.129-138
    • /
    • 2000
  • This study presents the mechanical characteristics, such as the permanent deformation and the crack, of the large stone asphalt mixtures. The large stone mixture was studied by Kandhal at NCAT(National Center for Asphalt Technology) in 1989. Japan and Arabian countries adopted the large stone mixture for the pavement construction. The experience and the study results showed that the interlocking of the aggregate system of the large stone mixtures is stable and less dependent on the binder characteristics in high temperature. These properties are known as the rutting resistant parameters. However, the mechanical test results should be supported to prove the benefits of the large stone mixtures. The creep test, resilient modulus tests on three different temperature, wheel tracking test and ravelling tests were conducted to evaluate the performance of the large stone mixtures in this study. The test results were compared with the conventional mixtures and modified asphalt concrete mixtures. The large stone mixtures showed better rutting resistance performance.

  • PDF

Evaluation on Thermal Strain Behavior Properties of Ultra High Strength Concrete considering Load (하중재하조건을 고려한 초고강도 콘크리트의 열변형거동특성 평가)

  • Lee, Young-Wook;Kim, Gyu-Yong;Choe, Gyeong-Cheol;Kim, Hong-Seop;Lee, Bo-Kyeong;Yoon, Min-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.162-163
    • /
    • 2015
  • Thermal deformation behavior of high-strength concrete (HSC) exposed to fire is different from that of normal strength concrete (NSC). In case of ultra-high-strength concrete (UHSC), it is well known that thermal deformation behavior is greater than HSC. With increasing research of UHSC in buildings, it is necessary to understand the performance of UHSC at elevated temperatures considering loading condition. Therefore, evaluation on properties of thermal strain behavior properties of ultra high strength concrete by loading and high temperature was conducted.

  • PDF

A Study on Friction Welding and AE Evaluation for Cold Die Steel and High Temperature Creep Properties (금형강의 마찰용접과 AE평가 및 고온 크리프 특성에 관한 연구)

  • 황성필;김일석;유인종;이연탁;오세규
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.282-288
    • /
    • 2001
  • This paper deals with determining the proper friction welding condition and analyzing various mechanical properties of friction welded joints of the bladepart heat resisting steel(STD11) for cold die punch to the shank part alloy steel(SCM440). And the in-process real-time weld quality evaluation technique by acoustic emission during friction welding of STD11 to SCM440 steels with higher confidence and reliability has been much required even though it might be the first trial approach for developing it. Also, the high temperature properties of STD11-SCM440 weld were considered in this paper.

  • PDF

Creep Properties of AZ31 Magnesium Alloy at Elevated Temperature (AZ31 마그네슘 합금의 고온 크리프 특성)

  • Chung, Chin-Sung;Kim, Ho-Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.6
    • /
    • pp.20-26
    • /
    • 2009
  • The creep deformation behavior of AZ31 magnesium alloy was examined in the temperature range from 573 to 673K (0.62 to 0.73 Tm) under various constant stresses covering low strain rate range from $4{\times}10^{-9}\;s^{-1}$ to $2{\times}10^{-2}\;s^{-1}$. At low stress level, the stress exponent for the steady-state creep rate was ~3 and the present results were in good agreement with the prediction of Takeuchi and Argon model. At high stress level, the stress exponent was ~5 and the present results were in good agreement with the prediction of Weertman model. The transition of deformation mechanism from solute drag creep to dislocation climb creep could be explained in terms of solute-atmospherebreakaway concept.

Evaluation on Thermal Strain Behavior Properties of Ultra High Strength Concrete considering Load (하중재하조건을 고려한 초고강도 콘크리트의 열변형거동특성 평가)

  • Lee, Young-Wook;Kim, Gyu-Yong;Choe, Gyeong-Cheol;Kim, Hong-Seop;Lee, Bo-Kyeong;Yoon, Min-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.80-81
    • /
    • 2015
  • Thermal deformation behavior of high-strength concrete (HSC) exposed to fire is different from that of normal strength concrete (NSC). In case of ultra-high-strength concrete (UHSC), it is well known that thermal deformation behavior is greater than HSC. With increasing research of UHSC in buildings, it is necessary to understand the performance of UHSC at elevated temperatures considering loading condition. Therefore, evaluation on properties of thermal strain behavior properties of ultra high strength concrete by loading and high temperature was conducted.

  • PDF

Behaviors of surface micro-crack of 304 stainless steel at elevated temperature (304스테인리스강의 고온표면미소 균열의 거동에 관한 기초적 연구)

  • 서창민;이정주;김영호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.6
    • /
    • pp.1320-1326
    • /
    • 1988
  • This paper deals with the behavior of surface crack growth and the characteristics of surface micro-crack distribution under creep and creep-fatigue with 1 min. and 10 min. of load holding times at 593.deg.C, in air. The test specimen is a plate type with a small artificial defect of type 304 the small defect has been carried out by the surface replica method and optical microphotography. The experimental results have been interpreted from the view-point of fracture mechanics. It can be concluded that the longer the hold time the longer the total life time. Most of surface micro-cracks initiate at grain boundaries before the specimen reaches 20% of its total life time, a few of them lead to fracture by coalescence with the main crack.

Creep Rupture Life Prediction of High Temperature HRSG Tubes (고온 폐열회수장치 튜브의 크리프 파단특성 평가)

  • Kim, Woo Joong;Kim, Jae Hoon;Jang, Jung Cheol;Kim, Beom Soo;Lee, Gi-Chun
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.3
    • /
    • pp.6-10
    • /
    • 2013
  • The Heat Recovery Steam Generator(HRSG) is a device recycling the exhaust gas of gas turbine in combined power and chemical plants. Since service temperatures was very high, the damage of HRSG tubes intensively occurred in superheater and reheater. The aim of this paper is to determine life and hardness relationship that addresses creep-rupture test and creep-interrupt test in modified 9Cr-1Mo steel. The measured life that consists of function of hardness was found to constant tendency.

Compressive Behavior of Concrete with Loading and Heating (가열 및 재하에 의한 콘크리트의 압축거동)

  • Kim, Gyu-Yong;Jung, Sang-Hwa;Lee, Tae-Gyu;Kim, Young-Sun;Nam, Jeong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.119-125
    • /
    • 2010
  • The performance deformation of concrete can be caused by many factors such as load, thermal strain and creep at high temperature. Japan, Europe and America have been doing various experimental studies to solve these problems about thermal properties of concrete at high temperature, each study has generated different results due to a heating methods, heating hours, size of specimens and performance of a the loading, heating method, size of specimen and heating machine. There has been no unified experimental method so far. Therefore, this study reviewed experimental studies on the strength performance of concrete subject to heating and loading method. As a result, compressive strength of specimen prestressed increase in the temperature range of between $100^{\circ}C$ and about $400^{\circ}C$. Also, results can be analyzed as compare equation of compressive strength at elevated temperature with CEN and CEB code.

Examination of Strain Model Constants considering Strain Properties at High Temperature of Ultra-high-strength Concrete (초고강도 콘크리트의 고온 변형 특성을 고려한 변형모델 상수 검토)

  • Hwang, Eui-Chul;Kim, Gyu-Yong;Choe, Gyeong-Cheol;Yoon, Min-Ho;Lee, Bo-Kyeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.6
    • /
    • pp.91-97
    • /
    • 2016
  • Evaluation on the test of actual concrete member to confirm the fire resistance of the concrete member using ultra-high strength concrete is required. However, test equipment which has large loading capacity is needed to the actual member experiment. So, many researchers evaluated the fire performance through analytical studies using the material models. This study experimentally evaluated strain properties on ultra-high-strength concrete of 80, 130 and 180 MPa with heating and examined to apply the existing strain model about ultra-high-strength concrete. As a results, constants are drawn by method of least squares applying experimental values and calculated values by the existing strain model, it proposed strain model that can be applied to ultra-high-strength concrete.

Potential of HAZ Property Improvement through Control of Grain Boundary Character in a Wrought Ni-based Superalloy (단련용 Ni기 초내열합금의 입계구조 제어를 통한 HAZ 특성 향상 가능성 고찰)

  • Hong, H.U.;Kim, I.S.;Choi, B.G.;Jeong, H.W.;Yoo, Y.S.;Jo, C.Y.
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.43-43
    • /
    • 2009
  • 단련용 다결정 Ni기 초내열합금은 우수한 가공성, 내산화성, 고온특성 등으로 가스터빈 연소기, 디스크, 증기발생기 전열관 등 발전용 고온부품 소재에 널리 적용되고 있다. 최근 발전설비의 고효율화를 꾀하기 위해 작동 온도를 현격히 증가시키는 기술방향으로 발전하고 있고, 소재측면에서는 기존의 초내열합금 대비 고기능성을 확보할 수 있는 차세대 Ni기 초내열합금 개발이 유럽, 미국, 일본, 중국 등을 중심으로 활발히 이루어지고 있다. 이러한 소재의 고온강도 (온도수용성)를 향상시키기 위해서는 통상 규칙격자 금속간화합물인 $Ni_3(Al,Ti)-{\gamma}'$상의 분율을 증가시킬 수 있지만, ${\gamma}'$상분율이 증가할 경우 용접 및 후열처리 동안 용접열영향부 (HAZ)에서 액화균열이 발생할 가능성이 높아진다. 결정립계를 따라 발생하는 HAZ 액화균열은 입계특성에 의해 크게 영향을 받을 것으로 판단된다. 한편, 본 연구자들은 최근 입계 serration 현상을 단련용 합금에 도입시키는 특별한 열처리를 이론적 접근법을 통해 개발하였다. 형성된 파형입계는 결정학적인 관점에서 조밀 {111} 입계면을 갖도록 분해 (dissociation)되어 낮은 계면에너지를 갖게 됨을 확인하였으며, 입계형상 변화뿐만 아니라 탄화물 특성변화까지 유도하여 크리프 수명을 기존대비 약 40% 정도 향상시킴을 확인하였다. 이러한 직선형 입계 대비 'special boundary'로 간주되는 파형입계가 도입될 경우, HAZ 결정립크기 변화 및 액화거동에 미치는 영향을 고찰하고, 아울러 입계특성 제어가 용접성/용접부 품질 향상에 기여할 수 있는 가능성도 토의하고자 하였다. 본 연구에서는 재현 HAZ 열사이클 시험을 통해 미세구조를 정량적으로 비교하였다. 상대적으로 입계구조가 안정된 파형입계의 이동속도가 高계면 에너지를 갖는 직선형 입계보다 느려 HAZ 결정립 성장이 효과적으로 억제됨을 확인할 수 있었다. 입계 액화거동을 살펴보면, 두 시편 모두 $M_{23}C_6$, MC 등 입계탄화물 계면이 빠른 승온중 액화반응 (constitutional liquation)에 의해 입계가 액화되었으며, 이후 급냉에 의해 입계에 액상막이 존재한 흔적이 발견되었다. 최고온도별로 입계액화 폭/비율을 정량적으로 비교한 결과, 파형입계가 직선입계 대비 대체로 낮음을 확인할 수 있었으며, 때때로 액화되지 않고 잔존하는 입계 탄화물이 관찰되었다. 재현 HAZ 미세조직을 통해 Hot ductility 시험 결과를 유추하자면, 파형입계가 직선입계 보다 좁은 취성온도영역 (Brittle Temperature Range)을 나타낼 것으로 예상되어, 입계특성제어에 의해 Ni기 초내열합금의 용접성을 향상 가능성을 확인하였다.

  • PDF