• Title/Summary/Keyword: 고온피로시험

Search Result 70, Processing Time 0.176 seconds

PWR 원전환경에서 오스테나이트 스테인리스강의 피로균열성장특성에 미치는 질소의 영향

  • Min, Gi-Deuk;Kim, Dae-Hwan;Lee, Bong-Sang;Kim, Seon-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.39.1-39.1
    • /
    • 2011
  • 가압경수로의 압력경계기기는 약 $300^{\circ}C$, 150기압의 고온고압수환경에서 가동되고 있다. 특히 가압기 밀림관은 고온수와, 저온수가 교차하는 부분으로 열성층 형성으로 열적, 기계적 피로 및 수화학환경이 더해진 부식피로 등에 의하여 손상을 받는다. PWR 원전에서 수화학환경은 대표적으로 용존산소(DO) 5ppb, pH 6~8, 용존수소(DH) <30 cc/kg, 온도 $316^{\circ}C$의 환경을 유지하게 된다. 가압기 밀림관에는 오스테나이트계 스테인리스강이 사용되는데, 오스테나이트계 스테인리스강은 고온 수화학환경에 민감한 것으로 알려져 있다. 따라서 오스테나이트계 스테인리강을 공기중에서의 기계적특성 및 피로특성을 향상시키기 위하여 질소를 첨가한 스테인리스강을 제조하여 PWR 원전환경에서의 피로균열성장특성을 평가하였다. 실험에 사용된 재료는 PWR 원전 가압기 밀림관 소재인 Type 347 스테인리스강에 0.0005 wt%가 첨가된 상용재와 0.11 wt% 질소가 첨가된 재료이다. 사용된 시편형상은 두께 5 mm, 폭 25.4 mm의 CT 시편이다. 수화학환경은 150기압, 온도 $316^{\circ}C$, 용존산소(DO) 5ppb, 용존수소(DH) 30 cc/Kg, pH는 약 7로 유지 하였으며, 응력비 0.1, 하중 반복속도 10Hz의 기계적 조건에서 하중제어로 시험을 진행하였다. 균열길이는 직류전위차법(Direct Current Potential Drop: DCPD)을 이용하여 측정하였다. 질소함량이 증가할수록 동일 사이클에서 균열길이가 늦게 성장하였고, 피로균열성장속도도 약간 늦어지는 것으로 나타났다. 각 스테인리스강의 피로파면 관찰결과 상용재는 약 1 ${\mu}m$의 산화물들이 생성되는 반면 질소첨가 스테인리스강은 약 0.1 ${\mu}m$정도 산화물이 생성되었다. 산화막의 두께도 질소가 첨가됨으로써 상용재에 비해 얇게 생성되었다. 따라서 질소가 첨가됨으로써 부식환경에서 내산화성이 향상되었으며, 이는 피로균열성장특성에 영향을 미치는 것으로 판단된다.

  • PDF

Surface crack growth behaviors of 304 stainless steel at elevated temperatures (304 스테인리스 鋼의 高溫에서의 表面균열 成長特性에 관한 硏究)

  • 서창민;신형섭;권영태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.355-361
    • /
    • 1987
  • Creep and fatigue tests were carried out on crack growth properties of small surface cracks in 304 stainless steel at 538.deg.C, 593.deg. C and 650.deg. C in air, by using small plate specimens with a small artificial pit. All the data of the crack growth rate per hour obtained in the present tests were correlated with the maximum stress intensity factor, so that the applicability of linear fracture mechanics to the crack growth of surface cracks at elevated temperature was investigated. In the creep test, relatiion of .sigma.$\^$n/.t$\_$f/=C is obtained between failure time and nominal stress at each temperature level, where n has the value of 11-14 depending on the temperature level. In the creep and fatigue crack growth properties of surface cracks at the elevated temperatures, the maximum stress intensity factor, $_{4}$$\_$max/, is some extent applicable parameter to describe the surface crack growth rate under the present experimental conditions. The crack growth rate per hour increases when the holding time decreases, and creep crack growth rate per hour becomes the lowest limit of crack growth rate per hour in this tests.

A Study on Growth Behavior of Small Fatigue Crack in 304 Stainless Steel at Elevated Temperatures (고온하 304 스테인레스강의 작은 표면구열의 성장거동에 관한 연구)

  • 서창민;김영호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.87-95
    • /
    • 1990
  • Rotating bending fatigue tests of an authentic steel 304 were performed at various temperatures such as room temperature, $538^{\circ}$ and $593^{\circ}C$. The plastic replica method was also applied in order to estimate the fatigue life on the basis of serial observation of small fatigue crack initiation and growth on the pit specimen surface. The fatigue crack growth behavior of 304 stainless steel was investigated within the frame work of elastic-plastic fracture mechanics within a narrow scatterband in spite of different stress levels at elevated temperature as at room temperature. The growth law of small surface crack is determined uniquely by the term. $\DELTA\sigma^{n}a$ where $\DELTA\sigma$ is the stress amplitude, a is the crack length, and n is a constant. It is found that the small crack growth behavior is basically equivalent to the S-$N_{f}$ relationship, where S and $N_{f}$ are stress and number of cycles to failure, and the fatigue life prediction is in good agreement with the experimental results.

High-Temperature Design and Integrity Evaluation of Sodium-Cooled Fast Reactor Decay Heat Exchanger (소듐냉각고속로 붕괴열교환기의 고온 설계 및 건전성 평가)

  • Lee, Hyeong-Yeon;Eoh, Jae-Hyuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.10
    • /
    • pp.1251-1259
    • /
    • 2013
  • In this study, high temperature design and creep-fatigue damage evaluation of a decay heat exchanger (DHX) in the decay heat removal systems of a sodium-cooled fast reactor (SFR) have been performed. Detail design and 3D finite element analysis have been conducted for the DHXs to be installed in active and passive decay heat removal systems in Korean Generation IV SFR, and the DHX installed in the STELLA-1(Sodium integral effect test loop for safety simulation and assessment) at KAERI (Korea Atomic Energy Research Institute). Evaluations of creep-fatigue damage based on full 3D finite element analyses were conducted for the two Mod.9Cr-1Mo steel heat exchangers according to the elevated temperature design codes of ASME Section III Subsection NH and RCC-MR code. Code comparisons were made based on the creep-fatigue damage evaluation and issues on conservatisms of the design codes were discussed.

Effect of thermal shock test on Cu pumping and surface roughness (열충격 시험에 의한 TSV의 Cu 돌출 및 표면 거칠기 변화)

  • No, Myeong-Hun;Lee, Jun-Hyeong;Jeong, Jae-Pil
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.140-140
    • /
    • 2013
  • 3차원 실장을 위한 TSV의 제조 공정 중에 발생할 수 있는 Cu의 돌출 거동에 대해 연구하였다. Cu의 돌출은 반도체를 제조할 때 고온(>$350^{\circ}C$) 공정인 BEOL (back end of line) 중에 발생하는 현상이다. Cu의 돌출은 Si과 Cu의 열팽창계수 차이에 의해 발생하는 현상으로 고온 공정 뿐만아니라 열충격 시험과 같은 열피로에 의해서 발생할 수 있다. 따라서 본 연구에서는 $-65^{\circ}C$에서 15분과 $150^{\circ}C$에서 15분을 1 사이클로 설정하여 0, 250, 500, 1000 사이클의 열충격 시험을 수행하였다. 열충격 시험 후 각 사이클에서의 Cu 돌출 거동과 Cu의 표면 거칠기 변화에 대해 연구하였다.

  • PDF

The Effect of Aging Treatment on the High Temperature Fatigue Fracture Behavior of Friction Welded Domestic Heat Resisting Steels (SUH3-SUS 303) (마찰용접된 국산내열 강 (SUH3-SUS303 )의 시효열처리가 고온피로강도 및 파괴거동에 미치는 영향에 관한 연구)

  • Lee, Kyu-Yong;Oh, Sae-Kyoo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.17 no.2
    • /
    • pp.93-103
    • /
    • 1981
  • It is well-known that nowadays heat resisting and anti-corrosive materials have been widely used as the components materials of gas turbines, nuclear power plants and engines etc. In the fields of machine production industry. And materials for engine components, like as the exhaust valve of internal combustion engine, have been required to operate under the high temperature range of $700^{\circ}C$-$800^{\circ}C$ and high pressured gas with repeated mechanical load for the high performance of engines. For these components, friction welding for bonding of dissimilar steels can be applied for in order to obtain process shortening, production cost reduction and excellent bonding quality. And age hardening recently has been noticed to the heat resisting materials for further strengthening of high temperature strength, especially high temperature fatigue strength. However, it is difficult to find out any report concerning the effects of age hardening for strengthening high temperature fatigue strength to the Friction welded heat resisting and anti-corrosive materials. In this study the experiment was carried out as the high temperature rotary bending fatigue testing under the condition of $700^{\circ}C$ high temperature to the friction welded domestic heat resisting steels, SUH3-SUS303, which were 10hr., 100hr. aging heat treated at $700^{\circ}C$ after solution treatment 1hr. at $1, 060^{\circ}C$ for the purpose of observing the effects of the high temperature fatigue strength and fatigue fracture behaviors as well as with various mechanical properties of welded joints. The results obtained are summarized as follows: 1) Through mechanical tests and micro-structural examinations, the determined optimum welding conditions, rotating speed 2420 rpm, heating pressure 8kg/mm super(2), upsetting pressure 22kg/mm super(2), the amount of total upset 7mm (heating time 3 sec and upsetting time 2 sec) were satisfied. 2) The solution treated material SUH 3, SUS 303, have the highest inclination gradient on S-N curve due to the high temperature fatigue testing for long time at $700^{\circ}C$. 3) The optimum aging time of friction welded SUH3-SUS 303, has been recognized near the 10hr. at $700^{\circ}C$ after the solution treatment of 1hr. at $1, 060^{\circ}C$. 4) The high temperature fatigue limits of aging treated materials were compared with those of raw material according to the extender of aging time, on 10hr. aging, fatigue limits were increased by SUH 3 75.4%, SUS 303 28.5%, friction welded joints SUH 3-SUS 303 44.2% and 100hr. aging the rates were 64.9%, 30.4% and 36.6% respectively. 5) The fatigue fractures occurred at the side of the base matal SUS303 of the friction welded joints SUH 3-SUS 303 and it is difficult to find out fractures at the friction welding interfaces. 6) The cracking mode of SUS 303, SUH 3-303 is intergranular in any case, but SUH 3 is fractured by transgranular cracking.

  • PDF

Low-Cycle Fatigue in Ni-Base Superalloy IN738LC at Elevated Temperature (니켈기 초내열합금 IN738LC의 고온 저주기피로 거동)

  • Hwang, Kwon-Tae;Kim, Jae-Hoon;Yoo, Keun-Bong;Lee, Han-Sang;Yoo, Young-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1403-1409
    • /
    • 2010
  • For many years, high-strength nickel-base superalloys have been used to manufacture turbine blades because of their excellent performance at high temperatures. The prediction of fatigue life of superalloys is important for improving the efficiency of the turbine blades. In this study, low cycle fatigue tests are performed for different values of total strain and temperature. The relations between strain energy density and number of cycles before failure occurs are examined in order to predict the low cycle fatigue life of IN738LC super alloy. The results of low cycle fatigue lives predicted by strain energy methods are found to coincide with experimental data and with the results obtained by the Coffin-Manson method.

Low Cycle Fatigue Behavior of Alloy617 Weldment at 850℃ (850℃에서의 Alloy 617 용접재의 저사이클 피로 특성)

  • Hwang, Jeong Jun;Kim, Seon Jin;Kim, Woo Gon;Kim, Eung-Seon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.3
    • /
    • pp.193-198
    • /
    • 2017
  • Alloy 617 is one of the primary candidate materials to be used in a very high temperature reactor (VHTR) system as an intermediate heat exchanger (IHX). To investigate the low cycle fatigue behavior of Alloy 617 weldments at a high temperature of $850^{\circ}C$, fully reversed strain-controlled fatigue tests were conducted with the total strain values ranging from 0.6~1.5%. The weldment specimens were machined using the weld pads fabricated with a single V-grove configuration by gas tungsten arc welding (GTAW) process. The fatigue life is reduced as the total strain range increases. For all testing conditions, the cyclic stress response behavior of the Alloy 617 weldments exhibited the initial cyclic strain hardening phenomenon during the initial small number of cycles. Furthermore, the overall fatigue cracking and the propagation or cracks showed a transgranular failure mode.

Characterization and Fatigue Life Evaluation of Rubber/Clay Nanocomposites (고무-점토 나노복합체 물성 및 피로내구성 평가)

  • Woo, Chang-Su;Park, Hyun-Sung;Joe, Deug-Hwan;Jun, Young-Sig
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1199-1203
    • /
    • 2011
  • Nanocomposites were prepared through the compounding of rubber and clay. Measurements of the static and dynamic mechanical properties of different compositions over a temperature range $70-100^{\circ}C$ showed that the mechanical properties of these rubber/clay nanocomposites are superior to those of existing rubber materials. In this study, by using the parameter of the maximum Green.Lagrange strain appearing at certain locations, the relationship between fatigue life and maximum Green.Lagrange strain, and the correlations between test-piece tests and bench tests of actual rubber components are proved. In order to predict the fatigue life of rubber components at the design stage, a simple procedure of life prediction is suggested. The predicted fatigue lives of the rubber engine mounts agree fairly well with the fatigue lives determined experimentally.

The Effects of Aggregate Gradations and SBS Modifier on the Viscoelastic Properties and Fatigue Performance of Asphalt Mixtures (골재의 입도와 SBS 개질재가 아스팔트 혼합물의 점탄성 물성 및 피로 공용성에 미치는 영향)

  • Lee, Hyun-Jong;Choi, Ji-Young;Cha, Soon-Man
    • International Journal of Highway Engineering
    • /
    • v.2 no.3
    • /
    • pp.129-144
    • /
    • 2000
  • This paper presents the characteristics of viscoelastic properties and fatigue performance of SBS modified asphalt mixtures depending on the aggregate gradation. Dynamic shear rheometer (DSR) and uniaxial tensile creep tests are performed to analyze the thermomechanical behavior of asphalt binders and mixtures, respectively. Uniaxial tensile fatigue tests for seven different asphalt mixtures are conducted to evaluate the effects of aggregate gradations and SBS modifier on the fatigue performance of the mixtures. DSR and uniaxial tensile creep tests results show that the SBS modified asphalt mixtures have better rutting resistance than the unmodified mixtures at high temperatures regardless of the aggregate gradations used. Fatigue factor $G^*sin\delta$ in Superpave binder specification may not be adequate for evaluating the fatigue Performance of asphalt mixtures. It is observed from uniaxial tensile fatigue tests that SBS modified asphalt mixtures compared to unmodified mixtures have ten times longer fatigue lives regardless of the aggregate gradations(dense, SMA, and Superpave gradations) used in the mixtures. The better fatigue performance of the SBS modified mixtures is observed even after long-term aging process. The effect of aggregate gradations on the fatigue performance is not as significant as the SBS modifier. The cellulose fiber added in the SMA mixture has negligible effects on the viscoelastic Properties and fatigue performance of the mixture, but is effective in reducing draindown. Although the SBS modified asphalt binder is used, it may be necessary to add the cellulose fiber into the SMA mixture to prevent the draindown.

  • PDF