• Title/Summary/Keyword: 고속 여객선

Search Result 23, Processing Time 0.016 seconds

A study on the characteristics of shipwaves in shallow water (천해역에서의 항주파의 특성에 관한 연구)

  • Gang Song-Jin;Kim Sun-Kyu;Son Chang-Bae;Kim Jong-Sung;Hong Jeong-Hyeok;Kim Chang-Je
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.06b
    • /
    • pp.185-190
    • /
    • 2006
  • Damages such as beach erosion, seawall destruction and difficulty of cargo working due to rolling of ship result from shipwave. In addition, high speed operations of motor boat and passenger ship respectively jeopardize sea bathers and anglers' safety. In general, shipwaves in shallow water have worse effect on coastal facilities and working people there than those in deepwater. This study aims to investigate the characteristics of shipwaves which occurred and propagated in shallowwater experimentally and theoretically.

  • PDF

Study on Reduction of Excessive Noise and Vibration of Aft Part of High Speed Ro-Ro Passenger Ship (고속 여객선 선미부 과대 진동/소음 감소를 위한 연구)

  • Shin, Yunkil
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.196-202
    • /
    • 2019
  • In this study, the excessive noise and vibration phenomena of a high-speed Ro/Ro passenger ship were analyzed, and a countermeasure was taken based on them. This ship was granted a comfort class notation by the classification society, which was COMFORT-VIBRATION-II and COMFORT-NOISE-CREW-II. However, unfortunately, excessive noise and vibration in the aft part of the ship were delivered from the twin shaft propellers, and therefore the Class Requirement was not satisfied before delivery. In order to obtain the class notation, all of the concerned parties came to an agreement to reduce the noise and vibration level during operation after delivery because a seasonal ferry service was already scheduled and the cabin was fully booked. The root cause of the massive amount of noise and vibration was mainly the propeller-induced excitation pulse and beating that occurred from the mismatch of the rotating speeds of the two shaft lines. A 1st order vibrating force and beating phenomena existed in the propeller. Thus, a reduction of the excitation force, elimination of the beating phenomena, and decrease of the noise level at the aft area cabins and public spaces were required. In addition, structural reinforcements were conducted using pillars and additional girders at the aft part of the decks.

Study of the Heeling Angle Prediction by using Simulation Data (시뮬레이션 데이터를 이용한 횡경사 각도 예측 방법 연구)

  • Youn, Dong-Hyup;Park, Chung-Hwan;Yim, Nam-Gyun
    • Journal of Navigation and Port Research
    • /
    • v.43 no.4
    • /
    • pp.231-236
    • /
    • 2019
  • As ships become bigger, faster, and diverse, transportation has increased the usage of marine vehicles. However, ship accidents are increasing. Ship accidents cause loss of life and property as well as environmental disasters. The occurrence of ship accidents causes enormous economic and environmental impacts. Notably, in the case of passenger ships, methods for preventing ship accidents are being discussed to avoid losing numerous human lives. The purpose of this study is to provide essential data for evacuation before reaching the dangerous time by predicting the time to reach the risk of capsizing based on the heeling angle of the passenger ship. Based on sinking accidents between 2012 and 2016, we set up specific scenarios and simulated the PRR1 data using commercial software MOSES V20. In the case of the linear equation, the simulation results showed a low error rate because the simulation data showed the linear graph. In the case of the quadratic equation, the error rate was low at the beginning but showed a high error rate at the subsequent angle.