• Title/Summary/Keyword: 고속충격

Search Result 319, Processing Time 0.033 seconds

An Experimental Study on the Failure Characteristics of Sn-xAg-0.5Cu Lead-free Solder (Sn-xAg-0.5Cu 무연 솔더의 파손특성에 관한 실험적 연구)

  • Jeong, Jong-Seol;Lee, Yong-Sung;Shin, Ki-Hoon;Cheong, Seong-Kyun;Kim, Jong-Hyeong;Jang, Dong-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.5
    • /
    • pp.449-454
    • /
    • 2009
  • This paper presents an experimental study on the failure characteristics of SnAgCu lead-free solder balls. To estimate the effect of Ag, three types of SnAgCu balls are first prepared by varying the weight percent of Ag(1.0, 3.0, 4.0 wt%) and then analyzed by reliability tests such as thermal shock, high speed ball shear, and drop tests. Thermal shock test reveals that the higher the weight percent of Ag is, the longer the fatigue lift becomes. To the contrary, high speed ball-shear test and drop test show that the shear strength and the fracture toughness of solder balls are inversely proportional to the weight percent of Ag, respectively, Reasons for these observations will be further investigated In the future work.

  • PDF

9f-leveling: An Efficient Wear-leveling Scheme for Flash Memory (K-평준화: 플래시 메모리의 효율적인 소거 횟수 평준화 기법)

  • Kim Do Yun;Yoo Hyun-Seok;Park Sung-Hwan;Park Won-Joo;Park Sangwon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07a
    • /
    • pp.787-789
    • /
    • 2005
  • 최근 이동성이 중요한 요소로 차지하는 기기들이 등장하면서 플래시 메모리가 각광을 받고 있다. 플래시 메모리의 소형화, 대용량화, 저전력화, 비휘발성, 고속화 그리고 충격에 강한 장점으로 인하여 많은 응용에서 디스크를 대체할 것으로 예상된다. 하지만 이런 플래시 메모리는 데이터를 기록하기 전에 해당 블록이 미리 소거가 되어야 하는 제약 조건을 가지고 있으며 각 블록들의 최대 소거 횟수가 제한되어 있다는 한계가 있다. 이때 소거 연산이 특정 블록에 집중되어 특정 블록의 수명이 단축되는 문제점을 해결하기 위하여 블록에 대한 소거 횟수 평준화 기법(wear-leveling)이 필요하다. 기존에 제안된 소거 횟수 평준화 기법은 각 블록의 소거 횟수를 유지해야하는 비용이 필요로 하거나 플래시 메모리가 대용량일 경우에는 블록 영역을 이동시키는데 비용이 발생하는 문제가 있다. 본 논문에서는 플래시 메모리의 소거 횟수 평준화를 위하여 해당 블록의 소거 횟수에 대한 정보의 유지의 부담을 줄이고 플래시 메모리의 대용량화 및 디스크 대체 시에 효율적인 소거 횟수 평준화 기법을 제안하고, 실험을 통하여 성능의 우수함을 보인다.

  • PDF

A Study on the Penetration Fracture Strength of Fragile Plates subjected to High Speed Impact (고속 충격을 받는 취성재 평판의 관통파괴 강도)

  • 김지훈;심재기;양인영
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.4
    • /
    • pp.3-9
    • /
    • 1996
  • In this study, comparison of theoretical solutions with experimental results is examined through fracture conditions for the case of float glasses subjected static loading. The range of fracture generation limits and critical penetration energies are solved according to the impactor mass under the high velocity, and analytical method of fracture strength and penetration strength are presented. Also, fracture patterns are investigated according to impact velocities. The results obtained from this study are as follows ; 1) Radial cracks are generated from the loading point regardless of plate thickness in the case of the plate subjected to the static loading. In the case of high-speed impact, dimensions of ring cracks become to smaller and length of radial cracks becomes shorter with the rapidity of impact velocity. 2) Kinetic change volume of collision after/before is constant regardless of velocities over the range of critical penetration velocity. 3) Although the same impact energy is working, the critical penetration energy is increased with the shorter of impactor mass. 4) Although the same impact energy is working, the penetration fracture of lighter Impactor mass is generated more than that of heavier impactor mass, and the impulse of lighter impacter mass appear more than that of heavier impactor mass. Therefore, the penetration fracture in the case of greater impulse is generated earlier regardless of the of the dimensions of Impact loading.

  • PDF

A Study on the Armor Optimization of Military Vehicle (군용차량 방탄재 최적화에 관한 연구)

  • Lee, Hyun-Jin;Choi, Jae-Shik;Kim, Geun-Won;Shin, Ki-Su
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.405-413
    • /
    • 2013
  • During the land operations, the enemy's gunnery is the primary threat. For the military vehicle, the bulletproof effect is the one of the important issues regarding the safety of soldiers on duty. Recently, the advanced military vehicles have planned to install armor plates. However, due to the budget problem, it is difficult to equip the protection systems. Hence, the optimum approach to increase bulletproof capability is essential. In this paper, the optimum thickness and component of the armor of military vehicles were evaluated by using finite element analysis for bullet impact effects. To achieve this aim, 7.62mm NATO bullet, 1.6mm steel and Kevlar-29 composite have been modeled and the simulations were conducted with various thickness cases by using MSC Nastran sol 700. Consequently, it was revealed that Kevlar-29 45 Layer is appropriate thickness for 7.62 bulletproof. Furthermore, Kevlar-29 in front of steel was effective by comparison with the back of steel for bulletproof.

Finite Element Analysis of High-speed Rotating Disks Considering Impulsive Loading by the Clearance and Contact (간격 및 접촉에 의한 충격하중을 고려한 고속 회전 디스크의 유한요소 해석)

  • Lee, Kisu;Kim, Yeong Sul;So, Jae Uk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.1
    • /
    • pp.45-53
    • /
    • 2014
  • For the time integration solution of the impulsive dynamic contact problem of high-speed rotating disks formulated by the finite element technique, the velocity and acceleration contact constraints as well as the displacement contact constraint are imposed for the numerical stability without spurious oscillations. The solution of the present technique is checked by the numerical simulation using the concentric high-speed rotating disks with the clearance and impulsive loading. It is shown that the almost steady state solution agrees with the corresponding analytical solution of the elasticity and that the differentiated constraints are crucial for the numerical stability of such high-speed contact problems of the disks under impulsive loading.

A Study on the Dynamic Behavior of the High Speed Railway Tracks (고속철도(高速鐵道)의 궤도(軌道)에 대한 동특성(動特性) 연구(研究))

  • Moon, Je Kil;Kang, Kee Dong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.1
    • /
    • pp.97-105
    • /
    • 1992
  • The purpose of this study is to provide the cause and countermeasure for track problems in the high speed railways due to the irregularly increasing dynamic wheel loads running over the speed range of 300 km/h. It has long been recognised that the track problems encountered on high speed railways are associated mainly with vertical dynamic loads which are related to the unsprung mass of vehicles and track irregularities. In addition to these parameters for the estimation of the dynamic wheel load variation, however, the dynamic characteristics of track structures are discussed in this paper with reference to mathematical modelling of the tracks and vehicle. From the results of the more detailed analyses, the effects of track stiffness and damping characteristics are considered to be significant for reducing the dynamic wheel loads. To make this point clear and appraise the overall performance of the track components, the theoretical analysis on the dynamic behavior of the tracks and wheel set impact tests on several track structures are performed. The experimental results from different track components are compared with each other. The track stiffness and damping characteristics are also presented quantatively.

  • PDF

Basic study of new concept environment-friendly pile foundations with earthquake resistant foundation and lateral reinforcement on rapid-transit railway bridge (고속철도교 기초 내진 및 수평저항성능 보강형 신개념 친환경말뚝 신공법의 실용화 기초연구)

  • SaGong, Myung;Paik, Kyu-Ho;Lim, Hae-Sik;Cho, Kook-Hwan;Na, Kyung
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.880-894
    • /
    • 2010
  • The Grout injected precast pile is widely used in rapid-transit railway bridge recently. The existing portland cement of well used filling at injected precast method that with low strength and environmental pollution, unstable in which ground water contamination by cement flow out, ground relaxation by water down, decrease of horizontality resistance and durability and load transfer divide etc. In particular, as in rapid-transit railway bridge need to secure safety from different angle with vibration of high speed train, horizontal force when train stop and earthquake. Works of foundation construction consider to requirements of the times to coal yard green growth. Together, new green foundation method for possible economics and securing of reduce the term of works are material to developments. Therefore, we carried out study that it is using and development new concept environment - friendly filling include durability and earthquake resistance, for secure safety and minimize environment pollution. To achieve this, we carried out difference tests that new green fillings of underwater concrete, high liquidity, high viscosity, early stiffness as compared to existing portland cement fillings. As results, new green filling have outstanding application at precast pile method and micropile construction method with vertical bearing capacity, horizontal bearing capacity and many case. From now on we will be looking forward to development of new environment-friendly foundation method from various further studies.

  • PDF

Numerical Analysis of Nuclear-Power Plant Subjected to an Aircraft Impact using Parallel Processor (병렬프로세서를 이용한 원전 격납건물의 항공기 충돌해석)

  • Song, Yoo-Seob;Shin, Sang-Shup;Jung, Dong-Ho;Park, Tae-Hyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.6
    • /
    • pp.715-722
    • /
    • 2011
  • In this paper, the behavior of nuclear-power plant subjected to an aircraft impact is performed using the parallel analysis. In the erstwhile study of an aircraft impact to the nuclear-power plant, it has been used that the impact load is applied at the local area by using the impact load-time history function of Riera, and the target structures have been restricted to the simple RC(Reinforced Concrete) walls or RC buildings. However, in this paper, the analysis of an aircraft impact is performed by using a real aircraft model similar to the Boeing 767 and a fictitious nuclear-power plant similar to the real structure, and an aircraft model is verified by comparing the generated history of the aircraft crash against the rigid target with another history by using the Riera's function which is allowable in the impact evaluation guide, NEI07-13(2009). Also, in general, it is required too much time for the hypervelocity impact analysis due to the contact problems between two or more adjacent physical bodies and the high nonlinearity causing dynamic large deformation, so there is a limitation with a single CPU alone to deal with these problems effectively. Therefore, in this paper, Message-Passing MIMD type of parallel analysis is performed by using self-constructed Linux-Cluster system to improve the computational efficiency, and in order to evaluate the parallel performance, the four cases of analysis, i.e. plain concrete, reinforced concrete, reinforced concrete with bonded containment liner plate, steel-plate concrete structure, are performed and discussed.

Numerical Analysis on the Compressible Flow Characteristics of Supersonic Jet Caused by High-Pressure Pipe Rupture Using CFD (CFD를 이용한 고압파이프 파단 시 초음속제트의 압축성유동 특성에 관한 수치해석)

  • Jung, Jong-Kil;Kim, Kwang-Chu;Yoon, Jun-Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.10
    • /
    • pp.649-657
    • /
    • 2017
  • A rupture in a high-pressure pipe causes the fluid in the pipe to be discharged in the atmosphere at a high speed resulting in a supersonic jet that generates the compressible flow. This supersonic jet may display complicated and unsteady behavior in general. In this study, Computational Fluid Dynamics (CFD) analysis was performed to investigate the compressible flow generated by a supersonic jet ejected from a high-pressure pipe. A Shear Stress Transport (SST) turbulence model was selected to analyze the unsteady nature of the flow, which depends upon the various gases as well as the diameter of the pipe. In the CFD analysis, the basic boundary conditions were assumed to be as follows: pipe of diameter 10 cm, jet pressure ratio of 5, and an inlet gas temperature of 300 K. During the analysis, the behavior of the shockwave generated by a supersonic jet was observed and it was found that the blast wave was generated indirectly. The pressure wave characteristics of hydrogen gas, which possesses the smallest molecular mass, showed the shortest distance to the safety zone. There were no significant difference observed for nitrogen gas, air, and oxygen gas, which have similar molecular mass. In addition, an increase in the diameter of the pipe resulted in the ejected impact caused by the increased flow rate to become larger and the zone of jet influence to extend further.

Assessment of Impact-echo Method for Cavity Detection in Dorsal Side of Sewer Pipe (하수관거 배면 공동 탐지를 위한 충격반향법의 적용성 평가)

  • Song, Seokmin;Kim, Hansup;Park, Duhee;Kang, Jaemo;Choi, Changho
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.8
    • /
    • pp.5-14
    • /
    • 2016
  • The leakage of water under sewer pipelines is one of main sources of sinkholes in urban areas. We performed laboratory model tests to investigate the presence of cavities using impact-echo method, which is a nondestructive test method. To simulate a concrete sewer pipe, a thin concrete plate was built and placed over container filled with sand. The cavity was modeled as an extruded polystyrene foam box. Two sets of tests were performed, one over sand and the other on cavity. A new impact device was developed to apply a consistent high frequency impact load on the concrete plate, thereby increasing the reliability of the test procedure. The frequency and transient characteristics of the measured reflected waveforms were analyzed via fast Fourier transform and short time Fourier spectrum. It was shown that the shapes of Fourier spectra are very similar to one another, and therefore cannot be used to predict the presence of cavity. A new index, termed resonance duration, is defined to record the time of vibration exceeding a prescribed intensity. The results showed that the resonance duration is a more effective parameter for predicting the presence of a cavity. A value of the resonance period was proposed to estimate the presence of cavity. Further studies using various soil types and field tests are warranted to validate the proposed approach.