• Title/Summary/Keyword: 고속충격파

Search Result 5, Processing Time 0.018 seconds

A Study of the Influence of the Injection Location of Supersonic Sweeping Jet for the Control of Shock-Induced Separation (경사충격파 박리유동 제어를 위한 초음속 진동제트 분출위치의 영향성 연구)

  • Park, Sang-Hoon;Lee, Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.11
    • /
    • pp.747-754
    • /
    • 2022
  • An experimental study was carried out to control a shock-induced boundary layer separation by utilizing the supersonic sweeping jet from the fluidic oscillator. High-speed schlieren, surface flow visualization, wall pressure measurement and precise Pitot tube measurement were applied to observe the influences of the location and the supply pressure of the fluidic oscillator on the characteristics of the oblique-shock-induced boundary layer separation. The characteristics of the separation control by the present supersonic fluidic oscillator was quantitatively analyzed by comparing with a conventional control method utilizing an air-jet vortex generator.

A Study on High Velocity Impact Phenomena by a Long Rod Penetrator (긴 관통자에 의한 고속충돌현상 연구)

  • 이창현;최준홍;홍성인
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.573-583
    • /
    • 1994
  • In this study, the shock characteristics for high velocity impact phenomena during the initial shock state by the long rod penetrator are calculated. From these results we re-analyze the one-dimensional hydrodynamic penetration theory by introducing the effective area ratio calculated from the mushroomed strain which is dependent on impact velocity. Calculated penetration depth and mushroomed strain show good agreement with high velocity impact experimental data. In addition we visualize the shock wave propagation in a transparent acryle block.

외부압축 초음속 흡입구에서 Spike-Tip과 Cowl-Lip의 형상에 따른 흡입구 성능에 대한 수치해석적 연구

  • Jo, Gyeong-Jun;Lee, Ji-Hong
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.612-617
    • /
    • 2015
  • 초음속 흡입구는 고속 비행에서 발생하는 충격파를 이용하여 제트엔진 내부에 유입되는 공기를 압축시키는 구조로써 주로 램제트와 스크램제트 엔진에 적용되어 연구개발이 진행되어 왔으며 현재는 미사일의 추진체 개발에도 응용되고 있다. 초음속 영역에서의 흡입구는 cone 모양의 스파이크 구조를 통해 경사충격파가 생성되어 외부에서의 공기압축을 먼저 거치게 된다. 본 연구에서는 EDISON CFD를 이용하여 외부압축 초음속 흡입구 주위의 공기유동을 해석하고 Cubbison, R.W.의 풍동실험 결과와 비교 분석하였다. 초음속 흡입구 주위의 유동을 2D 축대칭 압축성 유동으로 가정하고 EDISON CFD의 2D_Comp_P 솔버를 사용하여 수치해석을 수행하였다.

  • PDF

Numerical Simulation of Shock-Induced Combustion on Adaptive Mesh (적응격자를 이용한 충격파 유도 연소장 해석)

  • Kim, Sang-Hoon;Choi, Jeong-Yeol;Oh, Se-Jomg
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.397-400
    • /
    • 2010
  • Unstructured adaptive grid flow simulation is applied to the calculation of high speed compressible flow of inert and reactive gas mixtures. Computational results are presented for the case of premixed hydrogen-air supersonic flow over a 2-D wedge. In such a configuration, combustion may be triggered behind the oblique shock wave and transition to an oblique detonation wave is eventually obtained. It is shown that the solution adaptive procedure implemented is able to correctly define the important wave front.

  • PDF

Flow Visualization and Unstructured Grid Computation of Flow over a High-Speed Projectile (고속탄자 유동의 가시화 실험 및 비정렬격자 계산)

  • 이상길;최서원;강준구;임홍규;백영호;김두연;강호철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.12-20
    • /
    • 1998
  • Exter ballistics of a typical high-speed projectile is studied through a flow-visualization experiment and an unstructured grid Navier-Srokes computation. Experiment produced a schlieren photograph that adequately shows the characteristic features of this complex flow, namely two kinds of oblique cone shocks and turbulent wake developing into the downstream. A hybrid scheme of finite volume-element method is used to simulate the compressible Reynolds-Averaged Navier-Stok- es solution on unstructured grids. Osher's approximate Riemann solver is used to discretize the cinvection term. Higher-order spatial accuracy is obtained by MUSCL extension and van Albada ty- pe flux limiter is used to stabilize the numerical oscillation near the solution discontinuity. Accurate Gakerkin method is used to discretize the viscous term. Explict fourth-order Runge-Kutta method is used for the time-stepping, which simplifies the application of MUSCL extension. A two-layer k-$\varepsilon$ turbulence model is used to simulate the turbulent wakes accurately. Axisymmetric folw and two-dimensional flow with an angle of attack have been computed. Grid-dependency is also checked by carrying out the computation with doubled meshes. 2-D calculation shows that effect of angle of attack on the flow field is negligible. Axi-symmetric results of the computation agrees well with the flow visualization. Primary oblique shock is represented within 2-3 meshes in numerical results, and the varicose mode of the vortex shedding is clearly captured in the turbulent wake region.

  • PDF