• Title/Summary/Keyword: 고속/정밀 위치제어시스템

Search Result 25, Processing Time 0.023 seconds

Improvement of Positioning Accuracy of Laser Navigation System using Particle Filter (파티클 필터를 이용한 레이저 내비게이션의 위치측정 성능 향상)

  • Cho, Hyun-Hak;Kim, Jung-Min;Do, Joo-Cheol;Kim, Sung-Shin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.6
    • /
    • pp.755-760
    • /
    • 2011
  • This paper presents a method for improving the positioning accuracy of the laser navigation. As a wireless navigation system, the laser navigation which is more flexible than a wired guidance system is used for the localization and control of an AGV(automatic guided vehicle). However, the laser navigation causes the large positioning error while the AGV turns or moves fast. To solve the problem, we propose the method for improving the positioning accuracy of the laser navigation using particle filter which has robust and reliable performance in non-linear/non-gaussian systems. For the experiment, we use the actual fork-type AGV. The AGV has a gyro, two encoders and a laser navigation. To verify the performance, the proposed method is compared with the laser navigation which is a product. In the experimental result, we verified that the proposed method could improve the positioning accuracy by approximately 66.5%.

A Study on the Robust Control Gain Selection Scheme of a High-Speed/High-Accuracy Position Control System (고속/정밀 위치 제어 시스템의 강인한 제어게인 선정에 관한 연구)

  • Shin, Ho-Joon;Yun, Seok-Chan;Jang, Jin-Hee;Han, Chang-Soo
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.747-753
    • /
    • 2001
  • This paper presents a dynamic modeling and a robust PID controller design process for the wire bonder head assembly. For the modeling elements, the system is divided into electrical system, magnetic system, and mechanical system. Each system is modeled by using the bond graph method. The PID controller is used for high speed/high accuracy position control of the wire bonder assembly. The Taguchi method is used to evaluate the more robust PID gain combinations. This study makes use of an L18 array with three parameters varied on three levels. Computer simulations and experimental results show that the designed PID controller provides more improved signal to noise ratio and reduced sensitivity than the conventional PID controller.

  • PDF

Design of Robust High-Speed Motion Controller with Actuator Saturation and Its Application to Precision Positioning System (구동기 포화가 있는 견실 고속 온동 제어기 설계 및 정밀 위치 결정 시스템에의 적용)

  • Park, Hyun-Raek;Kim, Bong-Keun;Shh, Il-Hong;Chung, Wan-Kyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.9
    • /
    • pp.768-776
    • /
    • 2000
  • A robust high-speed motion controller is proposed. The proposed controller consists of the proximate time optimal servomechai는 (PTOD) for high-speed motion, disturbance observer (DOB) for robustness, friction compensator, and saturation handling element, In the proposed controller, DOB basically provides the chance to apply PTOS to non-double integrator systems by drastically reducing disturbances as well as unwanted signals due to difference between real system and the double integrator model. But, in DOB-based systems, if control input is saturated due to control input PTOS and/or DOB, overall system stability cannot be guaranteed. To solve this problem, ribust stability, when the control input is saturated. Eventually, a simple saturation handling element is inserted to maintain internal stability of overall system. Also, we explain the our two saturation handling methods, Additional Saturation Element (ASE_ and Self Adjusting Saturation (SAS), are the equivalent solutions of the saturation problem to maintain internal stability. The stability and performance of the proposed controller are verified through numerical simulations and experiments using a precision linear motor system.

  • PDF

A Precise Localization Method for a High Speed Mobile Robot using iGS and Dual Compass (iGS와 듀얼 컴퍼스를 이용한 고속 이동로봇의 정밀 위치 인식기법)

  • Jang, Won-Seok;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.12
    • /
    • pp.1182-1188
    • /
    • 2010
  • This paper proposes a precise localization algorithm for a quickly moving mobile robot. In order to localize a mobile robot with active beacon sensors, a relatively long time is needed, since the distance to the beacon is measured using the flight time of the ultrasonic signal. The measurement time does not cause a high error rate when the mobile robot moves slowly. However, with an increase of the mobile robot's speed, the localization error becomes too high to use for accurate mobile robot navigation. Therefore, in this research into high speed mobile robot operations, instead of using two active beacons for localization an active beacon and dual compass are utilized to localize the mobile robot. This new approach resolves the high localization error caused by the speed of the mobile robot. The performance of the precise localization algorithm was verified by comparing it to the conventional method through real-world experiments.

A Study on the Development of a Home Mess-Cleanup Robot Using an RFID Tag-Floor (RFID 환경을 이용한 홈 메스클린업 로봇 개발에 관한 연구)

  • Kim, Seung-Woo;Kim, Sang-Dae;Kim, Byung-Ho;Kim, Hong-Rae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.2
    • /
    • pp.508-516
    • /
    • 2010
  • An autonomous and automatic home mess-cleanup robot is newly developed in this paper. Thus far, vacuum-cleaners have lightened the burden of household chores but the operational labor that vacuum-cleaners entail has been very severe. Recently, a cleaning robot was commercialized to solve but it also was not successful because it still had the problem of mess-cleanup, which pertained to the clean-up of large trash and the arrangement of newspapers, clothes, etc. Hence, we develop a new home mess-cleanup robot (McBot) to completely overcome this problem. The robot needs the capability for agile navigation and a novel manipulation system for mess-cleanup. The autonomous navigational system has to be controlled for the full scanning of the living room and for the precise tracking of the desired path. It must be also be able to recognize the absolute position and orientation of itself and to distinguish the messed object that is to be cleaned up from obstacles that should merely be avoided. The manipulator, which is not needed in a vacuum-cleaning robot, has the functions of distinguishing the large trash that is to be cleaned from the messed objects that are to be arranged. It needs to use its discretion with regard to the form of the messed objects and to properly carry these objects to the destination. In particular, in this paper, we describe our approach for achieving accurate localization using RFID for home mess-cleanup robots. Finally, the effectiveness of the developed McBot is confirmed through live tests of the mess-cleanup task.