• Title/Summary/Keyword: 고성능AE감수제

Search Result 13, Processing Time 0.021 seconds

Influence of Polycarboxylate type Superplasticizer on the Fluidity and Rate of Heat Liberation of Cement Paste (시멘트페이스트의 유동성 및 수화발열속도에 미치는 폴리카르본산계 고성능AE감수제의 영향)

  • Daiki, Atarashi;Song, Young-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.813-816
    • /
    • 2008
  • Polycarboxylate-type superplasticizer is widely used for producing self-compacting and high-strength concrete and improving concrete durability. This paper discusses the influence of molecular structure of polycarboxylate-type superplasticizer on the fluidity and the rate of heat liberation of ordinary Portland cement paste. The fluidity of cement paste was increased by addition of polycarboxylate-type superplasticizer. The arrival time up to the maximum rate of heat liberation was increased by addition of polycarboxylate-type superplasticizer. The fluidity and the arrival time up to the maximum rate of heat liberation were more influenced by addition of polycarboxylate-type superplasticizer having shorter grafted chain than that having longer grafted chain.

  • PDF

A Study for Improving the Fluidity Retention in Concrete Used High Range Water Reducing AE Agent (고성능AE감수제 사용 콘크리트의 유동성 유지성능 향상을 위한 연구)

  • 김기형
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.313-323
    • /
    • 1998
  • Fluidity retention of concrete used high range water reducing AE agent(HWAE) is varied according to main component, dosage amount and dosing method of HWAE. The type and substitution ratio of mineral admixture also have influence on the fluidity retention of concrete used HWAE. In this study, for the purpose of improving the fluidity retention in concrete used HWAE. 3 types of HWAE and ground granulated blast furnace slag(SG) are used in cement paste, mortar and concrete varing dosage amount and dosing time of HWAE and substitution ratio of SG respectively. According to using the HWAE of naphthalene sulfonates and SG, the fluidity retention of mortar and concrete is improved remarkably. And after 30 min, dosing method of HWAE is very effective in improving the fluidity retension and strength of concrete regardless of type of HWAE.

Physical Properties of Permeable Concrete Using Slag as an Aggregate (슬래그 골재를 사용한 투수성 콘크리트의 물리적 성질)

  • 이용구;김희덕;성휘정;최재진
    • Proceedings of the KAIS Fall Conference
    • /
    • 2001.05a
    • /
    • pp.236-240
    • /
    • 2001
  • 본 연구는 제철소에서 부산물로 생성되는 고로슬래그 및 제강슬래그를 골재의 일부로 대체 사용하고 고성능AE감수제를 적정량 사용하여 고품질의 투수성 콘크리트를 제조하는 것에 관한 것이다. 실험결과 고성능AE감수제와 슬래그를 사용하는 경우 투수계수 0.1cm/sec 이상을 유지하는 상태에서 재령 28일의 압축강도 240kgf/㎠ 정도까지의 비교적 높은 강도의 투수성 콘크리트를 경제적으로 제조할 수 있음이 확인되었다.

An Experimental Study on the Basic Performance and Eco-Affinity Property of PNS Substituted Additive for Concrete (콘크리트용 PNS 치환 혼화제의 기초물성 및 친환경 특성 평가에 대한 실험적 연구)

  • Kim, Do-Su;Khil, Bae-Su;Jeun, Jun-Young;Jeun, Young-Hwane;Ryu, Deuk-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.729-732
    • /
    • 2008
  • Naphthalenic admixture(PNS) has been widely used as main component of AE reducing agent among superplasticizers for concrete for a long time. However its noxiousness has been appointed because of formaldehyde compound applied during in synthetic process. In this study, AE reducing agent prepared using PNS and substituted-PNS agent(ECO-AEM) without formaldehyde compound added to concrete. For these agent, the basic performance of concrete and ecological affinity properties were evaluated and compared.

  • PDF

Physical Properties of Permeable Concrete Using Slag as an Aggregate (슬래그 골재를 사용한 투수성 콘크리트의 물리적 성질)

  • 최재진;박원태
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.4
    • /
    • pp.404-408
    • /
    • 2003
  • This paper discusses the physical properties of permeable high quality concrete using blast furnace slag or steel slag as a part of aggregate. In the case of steel slag, aging treatment was adopted to prevent the volume expansion. With high range water reducing agent, the concrete using slag aggregate showed compressive strength up to 24MPa at the age of 28 days and the water permeability of the concrete was over the level of 0.1 m/s in this experiment. Also, there was no expansion problem in the concrete substituted with aged slag as a part of aggregate.

  • PDF

The Development and Field Application of Polycarboxylic Superplasticizer (폴리칼본산계 고성능AE감수제의 개발과 현장 적용)

  • 노재호;이재철;박재운;김영재
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.743-748
    • /
    • 2002
  • Properties of concrete have been tested with Polycarboxylic superplasticizers based on Malein Anhydride Acid Polymer synthesized in a laboratory, to decide the proper formulation for concrete. Ready-mixed concrete has been placed at field with the chosen formulated Polycarboxylic superplasticizer. The superplasticizer showed quite a performance in workability retention and strength development of concrete at laboratory test and field application.

  • PDF

An Experimental Study on the Influence of the Qualities of Ordinary Portland Cement on the Flowability of High Flow Concrete (보통 포틀랜드 시멘트 품질이 고유동 콘크리트의 유동 특성에 미치는 영향에 관한 연구)

  • Choi, Sung-Woo;Jo, Hyun-Tae;Ryu, Deug-Hyun;Kim, Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.1
    • /
    • pp.37-44
    • /
    • 2012
  • Recently, due to developments in construction technology, the use of high-performance concrete became popular. High-performance concrete when compared to the ordinary concrete can better satisfy required performances by using mineral admixture and superplasticizer. Various studies on the effect of admixture materials on the quality of high-performance concrete have been reported. But there exist limited number of reported results on the effect of cement qualities, which is the most important constituent material in concrete. Therefore, in this study, the relationship between the quality of cement and the flowability of high flowing concrete is investigated. Qualities of domestically produced cement were identified, and then the influence of the qualities of cement on the flowability of high flowing concrete is evaluated. The result showed that the dosage of required superplasticizer was dependent on cement fineness, to brain, free-CaO, and interstitial phase, which all trigger initial hydration process of cement. Particularly, the results showed that fineness of cement has a high impact on the dosage of the superplasticizer. For strength property of concrete, the dosage of superplasticizer had a significant effect on the early age strength, but had negligible effect in the long term strength.

Effect of Polycarboxylate Type Superplasticizer on the Rheological Properties of Mortar (고성능AE감수제를 이용한 모르타르의 유동특성 평가에 관한 연구)

  • Jung, Youn-Sik;Lim, Chae-Yong;Yang, Seung-Kyu;Um, Tae-Sun;Lee, Jong-Ryul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.801-804
    • /
    • 2006
  • Polycarboxylate type superplasticizers(PC) have got widely used for making not only high performance concrete but low grade concrete as well. It is known that fluidity of cement with PC is affected by the characteristics of cement especially sulphate ion concentration and hydration activity. But the characteristics of PC also affect the fluidity. The fluidity of cement mortar with various types of PC was measured and critical dosage(CD) and dispersing ability(DA) was calculated. CD and DA is strongly dependent on the type of PC. And the variation of fluidity on time was affected by the type of PC also. So, it is advisable to investigate the property of PC before production of concrete and adjust it to meet the requirements of concrete depending on the materials, the time of transport and so on.

  • PDF

An Experimental Study on the Rheological Properties of the Combined Self-Compacting Concrete by Quality Variations (품질변동에 따른 병용계 자기충전 콘크리트의 유동특성에 관한 실험적 연구)

  • Kwon, Yeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.277-285
    • /
    • 2014
  • The purpose of this study is to investigate experimentally the variation factors range having influence on the rheological properties of the combined self-compacting concrete according to materials quality, weighting error and site conditions. Two types cement (blast-furnace slag cement and belite cement), lime stone powder as binder and the optimum mix proportions in the preceded study are selected for this study. Also, variations for sensitivity test are as followings; (1) Concrete temperature 3 cases (2) Surface moisture of sand 5cases (3) Fineness modulus of sand 5cases (4) Specific surface of lime stone powder 3cases (5) Dosage of chemical admixture 5cases. Slump flow ($650{\pm}50mm$), 500 mm reaching time (($7{\pm}3sec$), V-type flowing time ($15{\pm}5sec$) and U-box height (min. 300 mm) are tested for sensitivity. As test results, the variations range for quality control are as followings. (1) Concrete temperature; $10{\sim}20^{\circ}C$(below $30^{\circ}C$) (2) Surface moisture of sand; $base{\pm}0.6%$ (3) Fineness modulus of sand; $2.6{\pm}0.2$ (4) Dosage of chemical admixture; $base{\pm}0.2%$ (5) Specific surface of lime stone powder $6000cm^2/g$. Compared with two types cement including based belite cement (binary type) and based slag cement (ternary type), the combined self-compacting concrete used belite cement type is most stable in the quality control because of high contents for lime stone powder and $C_2S$. It is to propose a control scheme of the combined self-compacting concrete in the actual construction work.