• Title/Summary/Keyword: 고성능 지보재

Search Result 7, Processing Time 0.017 seconds

Performance Study of High-Performance Synthetic Supporting Materials by Real-Scale Tests (실대형 시험을 통한 고성능 합성지보재의 성능 고찰)

  • Kang, Tae-Ho;Chang, Soo-Ho;Choi, Soon-Wook;Lee, Chulho
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.428-439
    • /
    • 2021
  • A spray-on membrane is a material composed of a polymer, and is a spray-type material that is expected to be able to replace materials such as existing shotcrete or sheet membrane for support or waterproofing purposes. In the previous studies, it is expected that the thickness of the support material such as shotcrete can be reduced if the spray-on membrane is additionally installed on the existing cement-based support materials. In this study, a three-point bending test was performed by a spray-on membrane on the high-performance shotcrete on the outside, and comparison was made between the case where high-performance shotcrete and a spray-on membrane were installed. As a result of comparing the values calculated through the standard test and the real-size bending test, there was no significant difference in terms of flexural strength, but it was found that there was a difference in flexural toughness.

Recent Issues in the Design and Construction of High-Performance Shotcrete Lining (고성능 숏크리트 라이닝의 설계 및 시공기술 분석)

  • 배규진;이석원;박해균;이명섭;김재권;장수호
    • Tunnel and Underground Space
    • /
    • v.14 no.1
    • /
    • pp.1-15
    • /
    • 2004
  • The development of high-performance shotcrete lining is essential in improving the long-term durability of tunnels and in introducing single-shell tunnelling methods, where shotcrete as well as rockbolts are used as permanent support members. In this paper, new and advanced admixtures to improve shotcrete performance are introduced. In addition, requirements for mechanical properties as well as test items for quality control of shotcrete are summarized. A case study on the application of the pneumatic pin penetration test which can estimate compressive strength of shotcrete more easily and quickly is also illustrated. Previous studies to analyze the behaviors of shotcrete lining by considering its transient hardening and to carry out the sensitivity analysis of the design parameters of shotcrete lining are discussed to give fundamental concepts on rock-support interactions. Representative single-shell tunnelling methods where high-performance shotcrete lining is applied as a permanent support are also introduced.

Performance Improvement and Durability Evaluation of Shotcrete for Permanent Tunnel Support (터널 영구 지보재로서의 숏크리트 고성능화 및 내구성 평가에 관한 연구)

  • Lee, Sang-Pil;Ryu, Jong-Hyun;Lee, Sang-Don;Jeon, Seok-Won;Lee, Chung-In
    • Tunnel and Underground Space
    • /
    • v.17 no.4
    • /
    • pp.266-284
    • /
    • 2007
  • Recently, many efforts have been made to construct the first unlined tunnel, without in-situ concrete lining, in Korea. However, the lack of reliability in the performance of shotcrete as permanent tunnel support prevented from its realization. Shotcrete has been regarded to have significant problems in field application and long term performance because of unsatisfactory strength level and durability compared to those of European countries. In this study, the high strength shotcrete satisfying compressive strength over 40 MPa and flexural strength over 4.5 MPa was developed from optimized mix design. The type of accelerators and the amount of silica fume were selected as the main factors in mixing process and the analyses were carried out up to the elapsed time of 2 years. In order to evaluate the short term durability of shotcrete, an array of laboratory test consisting of freeze-thaw, carbonation chloride penetration and permeability test was performed. For long-term durability tests, specimens have been put in an operated highway tunnel to expose them to the similar environment when they are actually used as an unlined tunnel support. From the strength and durability tests, it was found that only alkali-free based accelerator satisfied the target strength of this study and also, the developed shotcrete showed very high performance in its durability.

Review on the application of single-shell tunnel in Korea (싱글쉘 터널의 국내 적용에 대한 고찰)

  • Sangpil Lee;Heesang Ha;Donghyun Kim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.3
    • /
    • pp.223-242
    • /
    • 2024
  • Single-shell tunnels, introduced to South Korea in the early 2000s, have not been adopted for the main tunnels of roads or railways over the past two decades despite several attempts starting with the Gwangju City Bypass. This reluctance likely arises from concerns about the long-term performance of supporting materials and the absence of relevant criteria and specifications. However, recent progress, including the incorporation of high-strength shotcrete standards and corrosion-resistant rock bolt specifications, alongside equipment and technique enhancements, necessitates a reassessment of single-shell tunnels. While the single-shell tunnel method offers advantages in environmental impact, construction cost and period compared to the conventional NATM, it is crucial to address the challenges, such as limited design and construction experience, incomplete detailed standards, and insufficient construction specifications, through further research and pilot projects. This paper reviewed the basic principles of single-shell tunnel, current application and research status, technical development trends, criteria and specifications, and remaining challenges. It aims to reignite discussions on the feasibility of applying single-shell tunnels in South Korea.

A Study on failure mechanism and load-bearing capacity of single-shell tunnel lining (싱글쉘 터널 라이닝의 파괴 메카니즘 및 지보성능에 관한 연구)

  • Shin, Hyu-Soung;Kim, Dong-Gyou;Chang, Soo-Ho;Bae, Gyu-jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.3
    • /
    • pp.273-287
    • /
    • 2006
  • This study investigates the failure mechanism and load-carrying capacity of a single-shell lining which has no disturbance in transfer of shear force, with respect to a conventional double-shell lining which has separation between layers of shotcrete lining and secondary concrete lining by water-proof membrane. In order to evaluate the capacity, a 2-D numerical investigation is preliminarily carried out and then real-scale loading tests with tunnel lining section specimens are performed on the condition given by the numerical investigation. In the test, a concentrated load is applied for considering a released ground load or rock wedge load. Through this study, it appears that the single-shell lining takes the load-bearing capacity 20% higher than in case of the double-shell lining. In addition, a possibility of a composite single-shell shotcrete layer composed by multiple bonded layers partly involving different contents of high-capacity additives is shown thereby leading to use of less amount of the high-capacity additives on the condition of taking a similar load-bearing capacity.

Study on evaluation of bond strength of cone-shaped button cablebolt (콘형 케이블볼트의 인발강도 평가 연구)

  • Choi, Jung-In;Kim, Won-Keun;Lee, Dong-Seok;Lee, Seok-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.1
    • /
    • pp.61-73
    • /
    • 2010
  • The cablebolt which secures a workability and stability has been used in foreign countries as one of supporting materials with rebar rockbolt especially in construction of large underground structures. However, only the rebar rockbolt has been applied up to now to all the constructions of underground structures in Korea due to an absence of recognition of cablebolt and large underground structure projects. Consequently, the research for a performance evaluation and verification of cablebolt is very limited and only the proto-type field tests have been conducted. In this study, the cone-shaped button cablebolt is developed by modifying an existing button cablebolt. To evaluate a performance and applicability of cone-shaped button cablebolt, the laboratory pull tests are conducted and bond capacity is analyzed under a various conditions. The rebar rockbolt, plane cablebolt, and bulb cablebolt which has a similar mechanical behavior with cone-shaped button cablebolt, are also tested and their bond capacities are evaluated and compared with cone-shaped button cablebolt under the same condition. The results show that the bond capacity is in the order of (cone-shaped button cablebolt$\approx$bulb cablebolt) > rockbolt > plane cablebolt. It is found that the bond capacity of cone-shaped button cablebolt developed in this study is at least equivalent with an existing high performance cablebolt developed in foreign countries, therefore the cone-shaped button cablebolt could be used as one of supporting materials for underground structures in construction field.