• Title/Summary/Keyword: 고분자 전해질 막 연료 전지

Search Result 150, Processing Time 0.029 seconds

Preparation and Characterization of the Polymeric Antioxidant for Improving the Chemical Durability of Polymer Electrolyte Membranes (고분자 전해질 막의 화학적 내구성 향상을 위한 고분자형 산화방지제 제조 및 특성 분석)

  • LEE, BYEOL-NIM;KODIR, ABDUL;LEE, HYEJIN;SHIN, DONGWON;BAE, BYUNGCHAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.5
    • /
    • pp.308-314
    • /
    • 2021
  • Chemical durability issue in polymer electrolyte membranes has been a challenge for the commercialization of polymer electrolyte membrane fuel cells (PEMFCs). In this study, we proposed a manufacturing method of Nafion composite membrane containing a stable polyimide antioxidant to improve the chemical durability of the membrane. The thermal casting of the Nafion solution with poly (amic acid) induced polyimide reaction. We evaluated proton conductivity, oxidative stability with ex-situ Fenton's test, and fluoride ion emission to analyze the effect of polyimide antioxidants. We confirmed that incorporating the polyimide antioxidant improves the chemical durability of the Nafion membrane while maintaining inherent proton conductivity.

Perfluorinated Sulfonic Acid Ionomer-PTFE Pore-filling Membranes for Polymer Electrolyte Membrane Fuel Cells (고분자전해질연료전지용 과불소계 술폰화 이오노머-PTFE 강화막)

  • Kang, Seong Eun;Lee, Chang Hyun
    • Membrane Journal
    • /
    • v.25 no.2
    • /
    • pp.171-179
    • /
    • 2015
  • Perfluorinated sulfonic acid ionomers (PFSAs) have been widely as solid electrolyte materials for polymer electrolyte membrane fuel cells, since they exhibit excellent chemical durability under their harsh application conditions as well as good proton conductivity. Even PFSA materials, however, suffer from physical failures associated with repeated membrane swelling and deswelling, resulting in fairly reduced electrochemical lifetime. In this study, pore-filling membranes are prepared by impregnating a Nafion ionomer into the pore of a porous PTFE support film and their fundamental characteristics are evaluated. The developed pore-filling membranes exhibit extremely high proton conductivity of about $0.5S\;cm^{-1}@90^{\circ}C$ in liquid water.

Effect of Membrane Degradation on the Electrode Degradation in PEMFC (PEMFC에서 막 열화가 전극 열화에 미치는 영향)

  • Song, Jinhoon;Jeong, Jaejin;Jeong, Jaehyeun;Kim, Saehoon;Ahn, Byungki;Ko, Jaijoon;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.51 no.3
    • /
    • pp.325-329
    • /
    • 2013
  • The membrane and electrode were degraded coincidentally at real PEMFC(Proton Exchange Membrane Fuel Cells) operation condition. But the interaction membrane degradation between electrode degradation has not been studied. The effect of membrane degradation on electrode degradation was studied in this work. We compared electrode degradation after membrane degradation and electrode degradation without membrane degradation. I-V performance, hydrogen crossover current, impedance and TEM were measured after and before degradation of MEA. Membrane degradation enhanced hydrogen crossover, and then Pt particle growth rate was reduced. Increase of hydrogen crossover by membrane degradation reduced the electrode degradation rate.

Research Trends on Developments of High-performance Perfluorinated Sulfonic Acid-based Polymer Electrolyte Membranes for Polymer Electrolyte Membrane Fuel Cell Applications (고분자 전해질 막 연료전지 응용을 위한 고성능 과불소화계 전해질 막 개발 연구 동향)

  • Choi, Chanhee;Hwang, Seansoo;Kim, Kihyun
    • Membrane Journal
    • /
    • v.32 no.5
    • /
    • pp.292-303
    • /
    • 2022
  • An eco-friendly energy conversion device without the emission of pollutants has gained much attention due to the rapid use of fossil fuels inducing carbon dioxide emissions ever since the first industrial revolution in the 18th century. Polymer electrolyte membrane fuel cells (PEMFCs) that can produce water during the reaction without the emission of carbon dioxide are promising devices for automotive and residential applications. As a key component of PEMFCs, polymer electrolyte membranes (PEMs) need to have high proton conductivity and physicochemical stability during the operation. Currently, perfluorinated sulfonic acid-based PEMs (PFSA-PEMs) have been commercialized and utilized in PEMFC systems. Although the PFSA-PEMs are found to meet these criteria, there is an ongoing need to improve these further, to be useful in practical PEMFC operation. In addition, the well-known drawbacks of PFSA-PEMs including low glass transition temperature and high gas crossover need to be improved. Therefore, this review focused on recent trends in the development of high-performance PFSA-PEMs in three different ways. First, control of the side chain of PFSA copolymers can effectively improve the proton conductivity and thermal stability by increasing the ion exchange capacity and polymer crystallinity. Second, the development of composite-type PFSA-PEMs is an effective way to improve proton conductivity and physical stability by incorporating organic/inorganic additives. Finally, the incorporation of porous substrates is also a promising way to develop a thin pore-filling membrane showing low membrane resistance and outstanding durability.

Preparation and Characterizations of poly(arylene ether sulfone)/SiO2 Composite Membranes for Polymer Electrolyte Fuel Cell (고분자 전해질 연료전지(PEFC)용 poly(arylene ether sulfone)/SiO2 복합막의 제조 및 특성분석)

  • Shin, Mun-Sik;Kim, Da-Eun;Park, Jin-Soo
    • Membrane Journal
    • /
    • v.27 no.2
    • /
    • pp.182-188
    • /
    • 2017
  • Sulfonated poly(arylene ether sulfone) (SPAES)-3-mercaptopropyl silica gel (3MPTSG) composite membranes with improved oxidative stability were prepared for polymer electrolyte fuel cell application. It has been reported that ether part of main chain of aromatic hydrocarbon based membranes were weak to radical attack to decrease membrane durability. In this study, the hydrophilic inorganic particles were introduced by minimizing a decrease in ion conductivity and increasing an oxidative stability. The composite membranes were investigated in terms of ionic conductivity, ion exchange capacity (IEC), FT-IR, TGA and contact angle, etc. As a result, increasing amount of the 3MPTSG resulted in decrease in proton conductivities and water uptakes at 100% R.H. but enhanced thermal and oxidative stabilities.

Effects of MEA Characteristics by Variation of Electrode Slurry Composition for PEMFC (PEMFC용 전극 슬러리 조성변화가 MEA 특성에 미치는 영향)

  • ;Sridhar Parthasarathi
    • 한국전기화학회:학술대회논문집
    • /
    • 2002.07a
    • /
    • pp.139-146
    • /
    • 2002
  • 본 연구에서는 고분자 전해질 연료전지(PEMFC)용 전극 슬러리 조성변화가 막전극접합체(MEA)의 전극 특성에 미치는 영향을 조사하였다. 전극촉매의 구성 성분인 Nafion의 함량을 변화시켜 전극 성능의 최적 함량을 고찰하였고, 백금의 함침량의 변화에 따른 전극 성능을 고찰하였다.

  • PDF

The performance of PEMFC during exposure to simultaneous sulfur impurity poisoning on cathode and anode (공기극과 연료극의 복합 황불순물에 의한 고분자 전해질막 연료전지의 성능에 미치는 영향)

  • Lee, Soo;Jin, Seok-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.594-598
    • /
    • 2012
  • Polymer electrolyte membrane fuel cell(PEMFC) performance degrades seriously when sulfur dioxide and hydrogen sulfide are contaminated in the fuel gas at anode and air source at cathode, respectively. This paper reveals the effect of the combined sulfur impurity poisoning on both PEMFC cathode and anode parts through measuring electrical performance on single FC operated under 1 ppm to 10 ppm impurity gases. The severity of $SO_2$ and $H_2S$ poisoning depended on concentrations of impurity gases under optimum operating conditions($65^{\circ}C$ of cell temperature and 100 % relative humidity). Sulfur adsorption occured on the surface of Pt catalyst layer on MEA. In addition, MEA poisoning by impurity gases were cumulative. After four consecutive poisonings with 1, 3, 5 to 10 ppm, the fuel cell performance of PEMFC was decrease upto 0.54 V(76 %) from 0.71 V.

Performance of Fuel Cell with PEMFC Fabricated under Different Pressure (고분자 전해질 연료전지 성능에 미치는 MEA 가압제조 공정 조건의 영향)

  • Lee, Ki-Seong;Sim, Sooman;Kim, Dongmin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.1
    • /
    • pp.70-75
    • /
    • 2013
  • It has fabricated membrane electrode assemblies (MEA) for proton exchange membrane fuel cell by hot-pressing method. The hot-pressing was used for the fabrication of MEA which is composed of commercial platinum electrode on carbon paper. The performance of MEA was studied with different fabrication conditions of temperature, pressure and torque. As the temperature increased, the performance of MEA was increased. and started to decrease l after arrived at the maximum performance of MEA. This is related with good contact between electrode and polymer electrolyte membrane at high temperature and microstructural change at much higher temperature. Similarly, as the pressure increased, the performance of the MEA increased up to highest values and start to decrease. According to the our results, the maximal performance of the MEA was at the temperature of $140^{\circ}C$ and the pressure of $1.5{\times}10^3$ kPa. The optimal torque to assemble the single stack was 3.2 N m.

Preparation of Self-humidifying Pt/Nafion Membranes using Supercritical $CO_2$ for PEMFCs (초임계유체를 이용한 PEMFC용 자가 가습 백금/나피온 막의 제조)

  • Byun, Jung-Yeon;Kim, Hyo-Won;Sung, Joon-Yong;Kim, Hwa-Yong
    • Clean Technology
    • /
    • v.13 no.2
    • /
    • pp.99-103
    • /
    • 2007
  • Pt/Nafion self-humidifying membranes for Polymer Electrolyte Membrane Fuel Cell (PEMFC) were synthesized via a supercritical-impregnation method. The Nafion 112 membranes were impregnated with Pt(II) acetylacetonate from a supercritical carbon dioxide ($scCO_2$) solution at $80^{\circ}C$ and 19.8 MPa. After the impregnation, the Pt-impregnated Nafion membrane was converted Pt deposited Nafion(Pt/Nafion) membrane by reducing agent, sodium borohydride ($NaBH_4$) under $50^{\circ}C$ and 2 hours. The prepared Pt/Nafion membranes were investigated by SEM, EDS and EPMA. The performance of the Pt/Nafion membranes was examined in PEMFC as a self-humidifying membrane. The cell performance of the Pt/Nafion membrane at $65^{\circ}C$ is better than that of Nafion 112.

  • PDF

Preparation and Properties of Sulfonated Poly(ether Sulfone)s Containing BFBN for PEMFC (PEMFC용 고분자 전해질 막을 위한 BFBN을 포함한 sulfonated poly(ether sulfone)s의 합성 및 특성)

  • Lim, Young-Don;Seo, Dong-Wan;Lee, Hyun-Chul;Jin, Hyun-Mi;Hossain, MD. Awlad;Jeong, In-Seok;Kim, Whan-Gi
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.5
    • /
    • pp.579-584
    • /
    • 2011
  • Sulfonated poly (ether sulfone)s containing BFBN were prepared from 2,3-bis(4-fluorophenyl)-2-butenedinitrile , 4,4-sulfonyldiphenol and sulfonated 4,4'-difluorodiphenylsulfone sodium salt using potassium carbonate, and followed acidification reaction with 1M $H_2SO_4$. BFBN was prepared from 4-fluorobenzylcyanide, $CCl_4$, NaOH using trimethylbenzylammoniumchloride . Sulfonated poly(ether sulfone)s containing BFBN were studied by FT-IR, $^1H$-NMR spectroscopy, and thermo gravimetric analysis (TGA). The water uptake of synthesized S-PBFBN membranes exhibit 31~62% compared with 28% of Nafion 211. The S-PBFBN membranes exhibit proton conductivities ($80^{\circ}C$, RH 100) of 53.8~117.4 mS/cm compared with 137.4 mS/cm of Nafion 211.