• Title/Summary/Keyword: 고분자 전해질 막 연료 전지

Search Result 150, Processing Time 0.022 seconds

Synthesis and Characterization of Multi-Block Sulfonated Poly (Arylene Ether Sulfone) Polymer Membrane with Different Hydrophilic Moieties for PEMFC (서로 다른 친수성구조를 가지는 고분자전해질 연료전지용 멀티블록형 술폰산화 폴리아릴렌에테르술폰 전해질막의 합성 및 특성 분석)

  • Yuk, Jinok;Lee, Sojeong;Yang, Tae-Hyun;Bae, Byungchan
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.2
    • /
    • pp.75-80
    • /
    • 2015
  • Multi-block sulfonated poly(arylene ether sulfone) (SPAES) copolymer was synthesized via nucleophilic aromatic substitution reaction for proton exchange membrane fuel cell application. After synthesizing the hydrophilic and hydrophobic precursor oligomers having different end-groups (F-terminated or OH-terminated), the effect of end group on the molecular weight was investigated. Hydrophilic oligomers with hydroquinone showed better performance as fuel cell membranes. SPAES membranes showed comparable proton conductivity to that of Nafion at $80^{\circ}C$ and above 70% RH. In particular, SPAES 9 with hydroquinone showed higher proton conductivity than SPAES 10 in the whole RH range studied. Increased local concentration of sulfonic acids within hydrophilic block might develop the hydrophilic-hydrophobic phase separation in the block copolymers.

Comparison of Membrane Degradation of PEMFC by Fenton Reaction and OCV Holding (Fenton 반응과 OCV Holding에 의한 PEMFC 고분자 전해질 막의 열화비교)

  • Oh, Sohyung;Kwag, Ahhyun;Lee, Daewoong;Lee, Mooseok;Lee, Donghoon;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.768-773
    • /
    • 2019
  • The Fenton reaction, which evaluates the electrochemical durability of polymer membranes of polymer electrolyte fuel cells (PEMFC), and the degradation of polymer membranes by OCV holding method are compared. The Fenton reaction is a method that can evaluate the chemical durability of the polymer membrane at outside the cell in a shorter time than the OCV Holding method. The Fenton reaction was carried out at 30% hydrogen peroxide, 10 ppm iron, and $80^{\circ}C$ for 24 hours. OCV Holding was driven at $90^{\circ}C$, 30% relative humidity and OCV for 168 hours. The Fenton reaction caused a lot of degradation inside the polymer membrane. On the other hand, in OCV Holding, the membrane thickness was thinned by the entire surface and internal degradation. The fluorine emission rate was more than 10 times higher than that of OCV Holding due to the Fenton reaction. The hydrogen permeation rate increased about 30% at 24 hours of Fenton reaction. At OCV Holding, hydrogen permeability decreased after 24 hours and then increased. As a whole, there was a difference in a membranes deteriorated by Fenton reaction and OCV Holding.

Performance of Modified-Silicon Carbide Fiber Composites Membrane for Polymer Exchange Membrane Fuel Cells (표면처리된 실리콘 카바이드 섬유 복합막의 고분자 전해질 막 연료전지 성능)

  • Park, Jeong Ho;Kim, Taeeon;Juon, Some;Cho, Yongil;Cho, Kwangyeon;Shul, Yonggun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.1
    • /
    • pp.28-38
    • /
    • 2014
  • The organic-inorganic composite membrane in polymer exchange membrane fuel cells (PEMFCs) have several fascinating technological advantages such as a proton conductivity, thermal stability and mechanical properties. As the inorganic filler, silicon carbide (SiC) fiber have been used in various fields due to its unique properties such as thermal stability, conductivity, and tensile strength. In this study, composite membrane was successfully fabricated by modified-silicon carbide fiber. Modified process, as a novel process in SiC, takes reaction by phosphoric acid after oxidation process (generated homogeniusly $SiO_2$ layer on SiC fiber). The mechanical property which was conducted by tensile test of the 5wt% modified-$SiO_2@SiCf$ composite membrane was better than that of Aquivion casting membrane as well as ion cxchange capacity(IEC) and proton conductivity. In addition, the single cell performance was observed that the 5wt% modified-$SiO_2@SiCf$ composite membrane was approximately $0.2A/cm^2$ higher than that of a Aquivion casting electrolyte membrane and electrochemical impedance was improved with the charge transfer resistance and membrane resistance.

Development of the SiO2/Nano Ionomer Composite Membrane for the Application of High Temperature PEMFC (전기방사를 이용한 SiO2/nano ionomer 복합 막의 제조 및 고온 PEMFC에의 응용)

  • Na, Hee-Soo;Hwang, Hyung-Kwon;Lee, Chan-Min;Shul, Yong-Gun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.5
    • /
    • pp.569-578
    • /
    • 2011
  • The $SiO_2$ membranes for polymer electrolyte membrane fuel cell (PEMFC) are preapared by electrospinning method. It leads to high porosity and surface area of membrane to accommodate the proton conducting materials. The composite membrane was prepared by impregnating of Nafion ionomer into the pores of electrospun $SiO_2$ membranes. The $SiO_2$:heteropolyacid (HPA) nano-particles as a inorganic proton conductor were prepared by microemulsion process and the particles are added to the Nafion ionomer. The characterization of the membranes was confirmed by field emission scanning electron microscope (FE-SEM), thermogravimetry analysis (TGA), and single cell performance test for PEMFC. The Nafion impregnated electrospun $SiO_2$ membrane showed good thermal stability, satisfactory mechanical properties and high proton conductivity. The addition of the $SiO_2$:HPA nano-particle improved proton conductivity of the composite membrane, which allow further extension for operation temperature in low humidity environments. The composite membrane exhibited a promising properties for the application in high temperature PEMFC.

Polymer Electrolyte Membranes of Poly(Styrene-Butadiene-Styrene) Star Triblock Copolymer for Fuel Cell (연료전지용 Poly(Styrene-Butadiene-Styrene) Star Triblock Copolymer의 고분자 전해질 분리막)

  • Garcia, Edwin D.;Jung, Bumsuk
    • Membrane Journal
    • /
    • v.29 no.5
    • /
    • pp.252-262
    • /
    • 2019
  • A sulfonated star branched poly(styrene-b-butadiene-b-styrene) triblock copolymer (SSBS) was synthesized with varying degrees of sulfonation. The effective sulfonation on the butadiene block was confirmed by FT-IR spectroscopy. Ion exchange capacity by titration was used to determine the degree of sulfonation. The synthesized polymer observed enhanced water uptake and proton conductivity. At room temperature, the SSBS with 25 mol% degree of sulfonation showed an outstanding proton conductivity of 0.114 S/cm, similar to that of commercial membrane, Nafion. The effect of temperature at constant relative humidity on conductivity resulted to a remarkable increase in proton conductivity. Methanol permeability studies showed a value lower than Nafion for all the sulfonated membranes. Structural nature observed using AFM showed that the membranes observed microphase separated nanostructures and the connectivity of the interionic channels.

Performance and Durability of PEMFC MEAs Fabricated by Various Methods (PEMFC MEA 제조 방법에 따른 성능 및 내구성)

  • Jeong, Jaehyeun;Song, Myunghyun;Chung, Hoibum;Na, Ilchai;Lee, Junghoon;Lee, Ho;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.558-563
    • /
    • 2014
  • To study the effects of fabrication methods on the performance and durability of polymer electrolyte membrane fuel cells (PEMFCs), membrane-electrode assemblies (MEAs) were fabricated using a Dr blade method, a spray method, screen print method and screen print + spray method. The performance of single cells assembled with the prepared MEAs were initially measured and compared. Electrode accelerated stress testing (AST) involving a potentiostatic step-wave with 10 s at 0.6 V followed by 30 s at 0.9 V was applied to test durability of MEAs. Before and after 6,000cycles of the AST, I-V curves, impedance spectra, cyclic voltammograms, linear sweep voltammetry (LSV) and transmission electron microscope (TEM) were measured. Under the operating conditions, the Dr Blde MEA exhibited the highest initial performance. After electrode accelerated stress testing, screen print + spray MEA showed lowest degradation rate.

Effect of Compensation for Thickness Reduction by Chemical Degradation of PEMFC Membrane on Performance and Durability (PEMFC 고분자막의 화학적인 열화에 의한 두께 감소 보정이 성능 및 내구성에 미치는 영향)

  • Sohyeong Oh;Yoojin Kim;Seungtae Lee;Donggeun Yoo;Kwonpil Park
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.1-6
    • /
    • 2024
  • As the demand for hydrogen electric vehicles for commercial vehicles increases, the durability of PEMFCs must increase more than five times that of passenger cars, so research and development to improve durability is urgent. When the PEMFC membrane electrode assembly (MEA) undergoes chemical degradation, the MEA thickness decreases and pinholes occur. In this study, changes in the performance and durability of the MEA were measured while increasing the clamping pressure of the unit cell after open circuit voltage (OCV) holding, an accelerated chemical degradation experiment. As the clamping pressure increased, the resistance of the polymer membrane and the membrane/electrode contact resistance decreased, improving the I-V performance and reducing the hydrogen permeability. As the hydrogen permeability decreased, the OCV increased. When the pinhole area was removed and the MEA clamping pressure was increased, the hydrogen permeability decreased sharply, confirming that the local degradation has a large effect on the performance and durability of the entire cell. When the pinhole was removed and re-clamping and OCV holding was evaluated, it was confirmed that the durability improved according to the decrease in membrane resistance and hydrogen permeability.

Effect of Ionomer Content on the Anode Catalyst Layers of PEM Fuel Cells (고분자 전해질 연료전지용 수소극 촉매층의 이오노머 함량 영향)

  • PAK, BEOMJUN;LEE, SEONHO;WOO, SEUNGHEE;PARK, SEOK-HEE;JUNG, NAMGEE;YIM, SUNG-DAE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.6
    • /
    • pp.523-530
    • /
    • 2019
  • For the low-Pt electrodes for polymer electrolyte fuel cells (PEMFCs), the optimization of ionomer content for anode catalyst layers was carried out. A commercial catalyst of 20 wt.% Pt/C was used instead of 50 wt.% Pt/C which is commonly used for PEMFCs. The ionomer content varies from 0.6 to 1.2 based on ionomer to carbon ratio (I/C) and the catalyst layer is formed over the electrolyte by the ultrasonic spray process. Evaluation of the prepared MEA in the unit cell showed that the optimal ionomer content of the air electrode was 0.8 on the I/C basis, while the hydrogen electrode was optimal at the relatively high ionomer content of 1.0. In addition, a large difference in cell performance was observed when the ionomer content of the hydrogen electrode was changed. Increasing the ionomer content from 0.6 to 1.0 by I/C in a hydrogen electrode with 0.05 mg/㎠ platinum loading resulted in more than double cell performance improvements on a 0.6 V. Through the analysis of various electrochemical properties in the single cell, it was assumed that the change in ionomer content of the hydrogen electrode affects the water flow between the hydrogen and air electrodes bounded by the membrane in the cell, which affects the overall performance of the cell. A more specific study will be carried out to understand the water flow mechanism in the future, and this study will show that the optimization process of hydrogen electrode can also be a very important cell design variable for the low-Pt and high-performance MEA.

Moisture Absorption Characteristics of Pt/Nafion Membrane for PEMFC Prepared by a Drying Process (건식법에 의해 제조한 PEMFC용 Pt/나피온 막의 흡습 특성)

  • Lee, Jae-Young;Lee, Hong-Ki
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.4
    • /
    • pp.310-315
    • /
    • 2012
  • A simple drying process was developed for the preparation of a Pt/Nafion self-humidifying membrane to be used for a proton-exchange membrane fuel cell (PEMFC). Platinum (II) bis (acetylacetonate), $Pt(acac)_2$ was sublimed, penetrated into the surface of a Nafion film and then reduced to Pt nanoparticles simultaneously without any support of a reducing agent in a glass reactor at $180^{\circ}C$ for 15 min. The process was carried out in $N_2$ atmosphere to prevent the oxidation of Pt nanoparticles at high temperature. The morphology and distribution of the Pt nanoparticles were observed by transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS), and we found that the average Pt particle size was ca. 3.7 nm, the penetration depth was ca. $17{\mu}m$. Almost all Pt nanoparticles were formed just beneath the surface and the number density decreased rapidly as the penetration depth increased. To estimate water absorption characteristics of the Nafion membranes, water uptake at an isothermal condition was measured by dynamic vapor sorption (DVS), and it was found that water uptake of the Pt/Nafion membrane was higher than that of the neat Nafion membrane.

Preparation and Characterization of PVA/PAM Electrolyte Membranes Containing Silica Compounds for Direct Methanol Fuel Cell Application (실리카 화합물을 함유한 PVA/PAM 전해질 막의 제조 및 특성과 직접메탄올 연료전지로의 응용)

  • Yoon, Seok-Won;Kim, Dae-Hoon;Lee, Byung-Seong;Lee, Bo-Sung;Moon, Go-Young;Byun, Hong-Sik;Rhim, Ji-Won
    • Polymer(Korea)
    • /
    • v.34 no.1
    • /
    • pp.45-51
    • /
    • 2010
  • This study focuses on the investigation of the possibility of the crosslinked poly (vinyl alcohol) membranes with both poly (acrylic acid-co-maleic acid) (PAM) and 3-(trihydroxysilyl)-1-propane-sulfonic acid (THS-PSA) for the direct methanol fuel cell application. In order to characterize the prepared membranes, the water content, the thermal gravimetric analysis, the ion exchange capacity, the ion conductivity and the methanol permeability measurements were carried out and then compared with the existing Nafion 115 membrane. The ion exchange capacity of the resulting membranes showed 1.6~1.8 meq./g membrane which was improved than Nafion 115, 0.91 meq./g membrane. In the case of the proton conductivity, the THS-PSA introduced membranes gave more excellent $0.042{\sim}0.056\;S{\cdot}cm^{-1}$ than Nafion 115, $0.024\;S{\cdot}cm^{-1}$. On the other hand, the methanol permeability was increased more than Nafion 115 for all the range of THA-PSA concentration.