• 제목/요약/키워드: 고분자 박막 연료전지

검색결과 14건 처리시간 0.023초

인산형 연료전지용 고분자 박막 매트릭스 제조 (Manufacture of Thin Polymer Matrix for PAFC)

  • 심재철;은영찬;신동열;이주성
    • 한국표면공학회지
    • /
    • 제29권4호
    • /
    • pp.229-237
    • /
    • 1996
  • Porous matrices for PAFC were prepared with chemically synthesized polyaniline powders. Phosphoric acid doped polyaniline showed decreasing electric conductivities as the temperature increased. Above $100^{\circ}C$, it showed negligible conductivities. It was stable in phosphoric acid up to $250^{\circ}C$. SiC powders or SiC whiskers were added to polyaniline to decrease the thermal expansion of polyaniline. 10% of polytetrafluoroethylene(PTFE) was also added as a binder. The bubble pressures and wettabilities of matrices were investigated and compared with the porosities measured by porosimeter. Based on these data, the optimum manufacturing condition was determined. The bubble pressure of the matrix made by adding 25w/o SiC whiskers was 345mmHg, the wettability was 235w/o, and the porosity was 83%. In the unit cell operation, the performances of polyaniline matrices were as good as those of SiC matrices. This result suggested that polyaniline can be a possible candidate for the matrix material of PAFC.

  • PDF

헤테로폴리산을 포함한 직접 메탄올 연료전지용 나피온/폴리페닐렌옥사이드 복합막의 제조 (Preparation of Composite Nafion/polyphenylene Oxide(PPO) with Hetropoly Acid(HPA) Membranes for Direct Methanol Fuel Cells)

  • 김동현;석준호;김화용;이갑수;성준용
    • Korean Chemical Engineering Research
    • /
    • 제44권2호
    • /
    • pp.187-192
    • /
    • 2006
  • 폴리페닐렌 옥사이드(PPO)를 이용하여 헤테로폴리산(HPA)을 고정시킨 박막 제조를 통해 새로운 고분자 복합막을 제조하고 특성을 분석하였다. 헤테로폴리산인 텅스토인산(PWA)이나 몰리브도인산(PMA)을 혼합한 PPO 박막은 서로 같은 용매에 녹지 않으므로 혼합용매를 사용하여 제조하였다. 본 연구에서는 PWA를 녹이기 위한 용매로 메탄올을 PPO를 녹이기 위한 용매로 클로로포름을 사용하였으며, 혼합된 PPO-PWA 용액을 유리판 위에서 제막하였다. 다공성의 PPO-PWA 박막에 나피온 혼합물을 사용하여 복합막을 제조하였고, 제조된 복합막은 이온 전도도와 메탄올 투과도를 측정하여 특성화하였다. PPO-PWA 복합막의 형태와 구조는 SEM(scanning electron microscopy)과 EDS(energy dispersive spectrometer)로 관찰하였고, 복합막은 직접 메탄올 연료전지(DMFC)용 전해질로서의 성능을 시험하였다. PPO-PWA 구조를 가지고 있는 복합막을 이용함으로써 DMFC 내에서의 메탄올 투과 현상을 66% 줄일 수 있었다.

유도 결합 플라즈마-스퍼터 승화법을 이용한 고분자 전해질 연료전지 분리판용 CrN 박막의 내식성연구 (Anti-corrosion Properties of CrN Thin Films Deposited by Inductively Coupled Plasma Assisted Sputter Sublimation for PEMFC Bipolar Plates)

  • 유영군;주정훈
    • 한국표면공학회지
    • /
    • 제46권4호
    • /
    • pp.168-174
    • /
    • 2013
  • In this study, low-cost, high-speed deposition, excellent processability, high mechanical strength and electrical conductivity, chemical stability and corrosion resistance of stainless steel to meet the obsessive-compulsive (0.1 mm or less) were selected CrN thin film. new price reduction to sputter deposition causes - the possibility of sublimation source for inductively coupled plasma Cr rods were attempts by DC bias. 0.6 Pa Ar inductively coupled plasmas of 2.4 MHz, 500 W, keeping Cr Rod DC bias power 30 W (900 V, 0.02 A) is applied, $N_2$ flow rate of 0.5, 1.0, 1.5 sccm by varying the characteristics of were analyzed. $N_2$ flow rate increases, decreases and $Cr_2N$, CrN was found to increase. In addition to corrosion resistance and contact resistance, corrosion resistance, electrical conductivity was evaluated. corrosion current density than $N_2$ 0 sccm was sure to rise in all, $N_2$ 1 sccm at $4.390{\times}10^{-7}$ (at 0.6 V) $A{\cdot}cm^{-2}$, respectively. electrical conductivity process results when $N_2$ 1 sccm 28.8 $m{\Omega}/cm^2$ with the lowest value of the contact resistance was confirmed that came out. The OES (SQ-2000) and QMS (CPM-300) using a reactive deposition process to add $N_2$ to maintain a uniform deposition rate was confirmed that.

패턴전사 프린팅을 활용한 리튬이온 배터리 양극 기초소재 Li2CO3의 나노스케일 패턴화 방법 (Nanoscale Pattern Formation of Li2CO3 for Lithium-Ion Battery Anode Material by Pattern Transfer Printing)

  • 강영림;박태완;박은수;이정훈;왕제필;박운익
    • 마이크로전자및패키징학회지
    • /
    • 제27권4호
    • /
    • pp.83-89
    • /
    • 2020
  • 지난 수십년간 인류에게 핵심적인 에너지 자원이었던 화석연료가 갈수록 고갈되고 있고, 산업발전에 따른 오염이 심해지고 있는 환경을 보호하기 위한 노력의 일환으로, 친환경 이차전지, 수소발생 에너지 장치, 에너지 저장 시스템 등과 관련한 새로운 에너지 기술들이 개발되고 있다. 그 중에서도 리튬이온 배터리 (Lithium ion battery, LIB)는 높은 에너지 밀도와 긴 수명으로 인해, 대용량 배터리로 응용하기에 적합하고 산업적 응용이 가능한 차세대 에너지 장치로 여겨진다. 하지만, 친환경 전기 자동차, 드론 등 증가하는 배터리 시장을 고려할 때, 수명이 다한 이유로 어느 순간부터 많은 양의 배터리 폐기물이 쏟아져 나올 것으로 예상된다. 이를 대비하기 위해, 폐전지에서 리튬 및 각종 유가금속을 회수하는 공정개발이 요구되는 동시에, 이를 재활용할 수 있는 방안이 사회적으로 요구된다. 본 연구에서는, 폐전지의 재활용 전략소재 중 하나인, 리튬이온 배터리의 대표적 양극 소재 Li2CO3의 나노스케일 패턴 제조 방법을 소개하고자 한다. 우선, Li2CO3 분말을 진공 내 가압하여 성형하고, 고온 소결을 통하여 매우 순수한 Li2CO3 박막 증착용 3인치 스퍼터 타겟을 성공적으로 제작하였다. 해당 타겟을 스퍼터 장비에 장착하여, 나노 패턴전사 프린팅 공정을 이용하여 250 nm 선 폭을 갖는, 매우 잘 정렬된 Li2CO3 라인 패턴을 SiO2/Si 기판 위에 성공적으로 형성할 수 있었다. 뿐만 아니라, 패턴전사 프린팅 공정을 기반으로, 금속, 유리, 유연 고분자 기판, 그리고 굴곡진 고글의 표면에까지 Li2CO3 라인 패턴을 성공적으로 형성하였다. 해당 결과물은 향후, 배터리 소자에 사용되는 다양한 기능성 소재의 박막화에 응용될 것으로 기대되고, 특히 다양한 기판 위에서의 리튬이온 배터리 소자의 성능 향상에 도움이 될 것으로 기대된다.