• 제목/요약/키워드: 고분자 농도

검색결과 834건 처리시간 0.022초

실내·외 공기 중 휘발성 유기화합물에 대한 흡착 시료채취 방법의 평가 (Evaluation of Adsorbent Sampling Methods for Volatile Organic Compounds in Indoor and Outdoor Air)

  • 백성옥;문영훈
    • 분석과학
    • /
    • 제17권6호
    • /
    • pp.496-513
    • /
    • 2004
  • 본 연구는 환경 대기 중 독성 VOC 측정을 위하여 흡착제를 이용한 시료채취와 열탈착을 병용한 GC/MSD 분석방법론 전반을 총괄적으로 평가하고, 나아가 각종 흡착제의 VOC 시료채취 특성을 비교 평가하기 위하여 수행하였다. 측정대상물질은 BTEX와 유기염소계 화합물을 포함하는 총 33개의 VOC를 선정하였으며, 조사된 흡착제는 상용중인 10종을 대상으로 하였다. 이들 흡착제는 총 6종의 탄소계 (Carbotrap, Carbopack B, Carbotrap C, Carbosieve-SIII, Carboxene 1000 및 Activated Charcoal)와 4종의 고분자 수지계 (Tenax TA, Porapak Q, Chromosorb 102, Chromosorb 106) 로 구분되어 진다. 시료채취과정은 단일 흡착관과 다중흡착관을 대상으로 표준시료와 실제 현장시료를 대상으로 재현성과 감응계수 측면에서 평가하였으며, 측정 정확성은 Carbotrap을 기준으로 평가하였다. 실험결과, 독성 VOC에 가장 적합한 흡착제로는 Carbotrap과 Carbopack B 및 Tenax TA 인 것으로 나타났으며, 강한 흡착제는 열탈착 성능이 떨어지고, 시료 중 수분의 영향으로 감도와 재현성이 현저히 떨어지는 문제점으로 인하여 적합하지 않은 것으로 나타났다. 3 종류의 이중흡착관과 2 종류의 삼중흡착관의 시료채취특성을 평가한 결과, Carbotrap C와 Carbotarp으로 조합된 경우가 가장 우수한 것으로 나타났다. 반면, 친수성인 강한 흡착제가 같이 충전된 삼중 흡착관의 사용은 수분의 영향을 최소화하는데 매우 세심한 주의가 필요한 것으로 나타났다. 결과적으로 흡착시료채취법을 이용하여 실내외 환경에서의 독성 VOC 농도에 대한 신뢰성 있는 자료를 얻기 위해서는 적절한 흡착제의 선정 (혹은 조합) 및 그에 따른 최적 분석 조건의 설정에 무엇보다도 세심한 주의가 요망된다.

초임계 용매내에서 생분해성 Poly(lactide-co-glycolide) 공중합체의 혼합물 밀도 측정 (Mixture Density Measurement of Biodegradable Poly(lactide-co-glycolide) Copolymer in Supercritical Solvents)

  • 변헌수
    • 폴리머
    • /
    • 제24권4호
    • /
    • pp.505-512
    • /
    • 2000
  • 본 연구는 초임계 용매인 $CO_2$, CHF$_3$ 및 CHClF$_2$내에서 poly(lactide-co-glycolide) [PLGAI 용액과의 흔합물 밀도를 측정하였다. 초임계 용매와 Poly(lactic acid) [PLA] 및 PLGA간의 흔합물 밀도는 온도 27-10$0^{\circ}C$와 압력 3000 bar까지 실험하여 나타내었다 [PLGA$_{x}$의 X는 0~50 mo1% 범위에 대한 glycolide의 몰농도이다]. PLA-$CO_2$ 흔합물은 약 1430 bar 이내에서, PLA-CHF$_3$계는 700 bar 이하에서, PLA-CHClF$_2$계는 100bar 이하에서 각각 용해되었다. 이때 온도범위는 27~93$^{\circ}C$이며, 흔합물 밀도는 1.084~l.334g/$cm^3$ 범위에서 나타났다. PLGA$_{15}$ 공중합체-$CO_2$ 흔합물은 약 1900 bar 이하에서 용해되었으며, 이때 혼합물 밀도는 37~92$^{\circ}C$에서 1.158~l.247g/$cm^3$으로 나타났다. PLGA$_{25}$공중합체-$CO_2$계는 약 2390 bar이하에서, PLGA$_{25}$-CHF$_3$계에 대해서는 1470 bar이하에서, PLGA$_{25}$-CHClF$_2$계에 대해서는 118 bar 이하에서 각각 용해되었으며, 흔합물 밀도는 29~81$^{\circ}C$사이에서 1.154~1.535g/$cm^3$로 나타났다. PLGA$_{50}$-$CO_2$계는 24$0^{\circ}C$, 3000 bar내fl서는 용해되지 않았으며, 반면 PLGA$_{50}$과 CHClF$_2$의 흔합물은 오히려 5$0^{\circ}C$와 100 bar내에서 쉽게 용해되었다. 또한 PLGA와 CHClF$_2$계는 glycolide 농도가 증가함에 따라 흔합물 밀도가 증가하였다.다..다..다..

  • PDF

제초제(除草劑) Pretilachlor와 해독제(害毒劑) Fenclorim의 수도(水稻)에 대한 생리적(生理的) 상호작용(相互作用) (Physiological Interactions Between the Herbicide Pretilachlor and the Safener Fenclorim on Rice)

  • 한성수;크리톤 하치오스
    • 한국잡초학회지
    • /
    • 제10권4호
    • /
    • pp.328-337
    • /
    • 1990
  • 벼의 생육(生育)과 생리적(生理的) 상호작용(相互作用)에 끼치는 chloroacetanilide계(系) 제초제(除草劑) pretilachlor와 해독제(解毒劑) fenclorim의 단독(單獨) 또는 조합처리(組合處理)의 영향(影響)을 온실(溫室)과 실내조건하(室內條件下)에서 검토(檢討)하였다. Fenclorim 50-300g a.i./ha과 pretilachlor 150-900g a.i./ha을 벼 담수직파후(湛水直播後) 3일후(後)에 조합처리(組合處理)하여 생육(生育)시킨 결과(結果) fenclorim은 15일후(日後) jpretilachlor의 벼에 대한 약해(藥害)에 저항적(抵抗的)으로 작용(作用)하였고, fenclorim 150g ai/ha 이상(以上)을 처리(處理)하였을 때 fenclorim은 1시간(時間) 동안 측정(測定)된 수도(水稻) 엽육(葉肉) 원형질체(原形質體)의 $^{14}C$pretilachlor의 흡수(吸收)를 증대(增大)시켰고, pretilachlor 흡수(吸收)의 해독제(解毒劑) 유기(誘起) 자극(刺戟)은 fenclorim 10, 20 및 40 uM에서 명백(明白)하게 일어났다. Pretilachlor 100 uM의 높은 농도(濃度)를 처리(處理)한 수도(水稻) 엽육(葉肉) 원형질체(原形質體)에서 방사능표식(放射能標識) 전구물질(前驅物質)의 단백질(蛋白質), DNA, 지질(地質)로의 시험관내(試驗管內) incorporation을 억제(抑制)하였다. Fenclorim 10uM 또는 100 uM을 처리(處理)한 수도원형질체(水稻原型質體)에서도 전구물질(前驅物質)의 단백질(蛋白質)과 지질(脂質)로의 incorporation을 억제(抑制)하였으나 DNA합성(合成)은 억제(抑制)되지 않았다. Pretilachlor와 fenclorim의 혼합처리(混合處理)는 이들 고분자물질(高分子物質)의 합성(合成)에 길항작용(拮抗作用)하기보다는 부가(附加) 또는 협력작용(協力作用)하는 것으로 나타났다. Fenclorim 1 uM을 처리(處理)한 원형질체(原形質體)의 총(總) 지질함량(脂質含量)에 끼치는 pretilachlor의 영향(影響)에 길항적(拮抗的)로 작용(作用)하였다. Pretilachlor와 fenclorim의 단독(單獨) 또는 조합처리(組合處理)로 원형질체(原形質體)에서의 $^{14}C$acetate와 극성지질(極性脂質), trigliceride와 steryl ester의 incorporation에 영향(影響)을 끼쳤으나 이 영향(影響)이 pretilachlor의 활성(活性) 또느 fenclorim의 보호작용(保護作用)을 설명(說明)하기에는 충분치 않았다. 결국(結局) 본(本) 연구결과(硏究結果)는 해독제(解毒劑) fenclorim이 단백질(蛋白質), DNA 및 지질합성(紙質合成)에 길항작용(拮抗作用)을 하여 제초제(除草劑) pretilachlor의 수도(水稻)에 대한 약해(藥害)를 보호(保護)한다고 할 수 없음을 시사(示唆)한다.

  • PDF

히알루론산 생산성 향상을 위한 Streptococcus zooepidemicus 균주 개량 및 발효조 배양공정 최적화 (Strain Improvement and Bioprocess Optimization for Enhanced Production of Haluronic Acid(HA) in Bioreactor Cultures of Streptococcus zooepidemicus)

  • 김수연;전계택
    • 한국미생물·생명공학회지
    • /
    • 제48권3호
    • /
    • pp.344-357
    • /
    • 2020
  • Streptococcus zooepidemicus 유래의 세포외 고분자물질인 히알루론산(hyaluronic acid) (HA)을 대량 생산하기 위해, 균주 개량, 생산배지 및 배양공정 개발에 관한 연구를 수행하였다. HA 고생산성 변이주를 선별하기 위해 약 99%의 사멸률을 보이는 ethylmethane sulfonate (EMS) 처리조건을 적용해서, 지속적인 random screening 방법으로 고생산성, 고안정성의 변이주들을 선별할 수 있었다. HA를 고농도로 생산하기 위해서는, 이 균주의 생화학 및 배양생리적 특성에 기반한 최적 배지개발이 필수적이라고 판단하여, one-factor-at-a-time (OFAT), full factorial design (FFD), steepest ascent method (SAM) 및 response surface method (RSM) (반응표면분석법)을 순차적으로 적용하여 통계적 배지 최적화 실험을 수행하였다. 최적 배지조성에서 플라스크 배양에 의한 HA 생산성은 5.38 g/l로서, 이전 배지(3.54 g/l)에 비해 약 52% 향상된 생산량을 얻을 수 있었다. 또한 선별된 우량균주와 최적화된 생산배지를 이용하여 5 L 발효조에서 배양공정 최적화 연구를 수행하였다. 이 균주의 생리학적 특성을 고려할 때, HA 생산성을 높이기 위해서는 (배양 중 HA 축적으로 인해 고점도를 띠는) 배양액으로의 충분한 용존산소 공급이 매우 중요한 요인인 것으로 판단되었다. 따라서 용존산소 공급과 밀접하게 관련있는 발효조의 교반시스템(교반 날개 종류, 크기 및 배치 등) 및 교반속도에 대한 최적화 연구를 수행하였다. 그 결과, 교반축 하부에는 Rushton turbine-type, 상부에는 marine-type의 확장된 교반날개(기존 대비 직경 1.3배 확장)가 설치된 경우, 450 rpm에서 강화된 혼합력과 충분한 용존산소 공급으로 인해 HA 생산성이 기존 플라스크 배양 대비 약 1.8배(9.79 vs. 5.38 g/l) 더 높은 것으로 확인되었다. 최종적으로 HA 배양공정의 scale-up 가능성을 확인하기 위해, pilot 규모의 50 L 발효조 배양을 최대 300 rpm의 교반속도에서 수행하였다. 처음으로 시도한 50 L 배양임에도 불구하고, HA 최대 생산성 면에서 볼 때, 5 L 발효조 결과와 거의 동일한 수준(98.5%) (9.11 vs 9.25 g/l)의 생산량을 얻을 수 있었다. 반면 지수기 성장단계인 배양 15시간까지의 50 L 배양의 HA 평균생산속도(rp)는 0.46 g/l/hr로서 0.62 g/l/hr인 5 L 배양 대비 약 74% 정도에 머무는 것으로 나타났다. 따라서 생산 발효조의 scale-up 시, 생산균주의 전단응력 민감성(shear damage)을 함께 고려하면서, 산소전달계수(kLa)를 기반으로 하는 교반시스템에 대한 체계적인 연구가 진행된다면, HA 생산속도도 증가될 수 있는 긍정적인 결과를 얻을 수 있을 것으로 기대된다.