• Title/Summary/Keyword: 고분괴점추정량

Search Result 1, Processing Time 0.015 seconds

Outlier Detection of Autoregressive Models Using Robust Regression Estimators (로버스트 추정법을 이용한 자기상관회귀모형에서의 특이치 검출)

  • Lee Dong-Hee;Park You-Sung;Kim Kee-Whan
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.2
    • /
    • pp.305-317
    • /
    • 2006
  • Outliers adversely affect model identification, parameter estimation, and forecast in time series data. In particular, when outliers consist of a patch of additive outliers, the current outlier detection procedures suffer from the masking and swamping effects which make them inefficient. In this paper, we propose new outlier detection procedure based on high breakdown estimators, called as the dual robust filtering. Empirical and simulation studies in the autoregressive model with orders p show that the proposed procedure is effective.