• Title/Summary/Keyword: 고무 사출

Search Result 43, Processing Time 0.028 seconds

Optimum Design of Rubber Injection Molding Process (고무사출성형의 적정설계)

  • Lee, Eun-Ju;Lim, Kwang-Hee;Giang, Vu Tai
    • Korean Chemical Engineering Research
    • /
    • v.49 no.1
    • /
    • pp.47-55
    • /
    • 2011
  • The optimum mold design and the optimum process condition were constructed upon executing process simulation of rubber injection molding with the commercial CAE program of MOLDFLOW (Ver. 5.2) in order to solve the process-problems of K company relating to cracks, which occurs at the inner cavity wall of C. V. joint boots. As a result it was confirmed that the real cracks occurs at the exactly same position of the cavity as exhibits the defects of weld and meld line and unsatisfactory curing according to the result of simulation. In order to prevent the occurrence of weld and meld line at the defect-position, the location of gate was altered to the optimum position of the cavity. Consequently the filling pattern was established to minimize the degree of the melt-fronts confronting or the melt-flows melding to prevent the occurrence of weld and meld line at the defect-position. It was observed that both gate-positions to maximize the degree of the formation of weld and meld line and air traps are located, respectively, in opposite direction each other with reference to the optimum gate position. In addition, the temperature of mold was raised by $10^{\circ}C$ and maintained at $170^{\circ}C$ for satisfactory curing.

A Study on the Part Shrinkage in Injection Molded Annular Shaped Product for Glass Reinforced Polycarbonate (유리섬유 강화 폴리카보네이트의 환상형상부품 사출성형시 성형수축에 관한 연구)

  • Lee, Mina;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • v.48 no.4
    • /
    • pp.300-305
    • /
    • 2013
  • Part shrinkage in injection molding is inevitable phenomenon. Thus, it is necessary not only study on the reducing part shrinkage but characterization of part shrinkage. In this study, part shrinkage in injection molded 2.5 dimensional annular shaped specimens has been studied using glass fiber reinforced PC. Annular shaped specimens were designed with various sizes of outer diameter and thickness. Injection temperature, packing time and packing pressure were selected for operational conditions. Profile variations of outer and inner diameters of molded specimens for various operational conditions were investigated. Sizes of outer and inner diameters of injection molded specimens were smaller than the sizes of mold. Part shrinkage decreased as outer diameter and thickness increased. Part shrinkage showed anisotropic behavior and it depended upon gate location. Subsequently, molded specimens were not circular but oval in shape, and showed the largest shrinkage in the direction of gate. It was realized that the mold design such as gate design is important to control the shape of molded products.

Analysis of cure behavior of low temperature curing liquid silicone rubber (LSR) for multi-material injection molding (이중사출 성형을 위한 저온 경화 액상실리콘고무 (LSR)의 경화 거동 분석)

  • Hyeong-min Yoo
    • Design & Manufacturing
    • /
    • v.17 no.1
    • /
    • pp.1-5
    • /
    • 2023
  • In multi-material injection molding, since two or more materials with different process conditions are used, it is essential to maximize process efficiency by operating the cooling or heating system to a minimum. In this study, Liquid silicone rubber (LSR) that can be cured at a low temperature suitable for the multi-material injection molding was selected and the cure behavior according to the process conditions was analyzed through differential scanning calorimetry (DSC). Dynamic measurement results of DSC with different heating rate were obtained, and through this, the total heat of reaction when the LSR was completely cured was calculated. Isothermal measurement results of DSC were derived for 60 minutes at each temperature from 80 ℃ to 110 ℃ at 10 ℃ intervals, and the final degree of cure at each temperature was calculated based on the total heat of reaction identified from the Dynamic DSC measurement results. As the result, it was found that when the temperature is lowered, the curing start time and the time required for the curing reaction increase, but at a temperature of 90 ℃ or higher, LSR can secure a degree of cure of 80% or more. However, at 80 ℃., it was found that not only had a relatively low degree of curing of about 60%, but also significantly increased the curing start time. In addition, in the case of 110 ℃, the parameters were derived from experimental result using the Kamal kinetic model.

  • PDF

Cure Characteristics and Mechanical Properties of Ternary Accelerator System in NR/BR Compounds (NR/BR Compounds의 가황촉진제 병용에 의한 가황 특성 및 기계적 물성 연구)

  • Kim, Il-Jin;Kim, Wook-Soo;Lee, Dong-Hyun;Bae, Jong-Woo;Byon, Young-Hoo;Kim, Wonho
    • Korean Chemical Engineering Research
    • /
    • v.47 no.4
    • /
    • pp.403-409
    • /
    • 2009
  • In the 1840s, Goodyear found out sulfur cure system, but cure time was too slow. So producing of rubber product takes a long time. In 1904, Oenslager et al. found that aniline is accelerated sulfur cure system. Recently, many rubber industries needed high yield and good quality. So, many researchers have studied a rubber system with fast vulcanization time and good mechanical properties. In this study, cure characteristics and mechanical properties of NR/BR compounds by accelerator with MBTS(2,2' Dithiobisbenzothiazole), TMTM(Tetramethylthiuram Monosulfide), ZDMC (Zinc dimethyldithiocarbamate), CBS(N-Cyclohexyl benzothiazolyl-2-sulfenamide), DPG(Diphenylguanidine) were evaluated. The results of the study indicate that cure charateristics($t_{90}$: 235 sec, $T_{max}$: 5.77 Nm) and mechanical properties (100, 300% modulus : 2,180, 5.656 Mpa and tear strength: 59.58 kgf/cm) of NR/BR compounds shows efficient acceleration with MBTS 1.5 phr, TMTM 0.5 phr, DPG 0.15phr. This is due to the synergistic activity of ternary accelerator system in rubber vulcanization.

Thermal and Mechanical Properties of Flame Retardant ABS Nanocomposites Containing Organo-Modified Layered Double Hydoxide (유기변성 LDH를 사용한 난연 ABS 나노복합재료의 열적 및 기계적 물성)

  • Kim, Seog-Jun
    • Elastomers and Composites
    • /
    • v.43 no.4
    • /
    • pp.241-252
    • /
    • 2008
  • ZnAl-LDH(layered double hydroxide) modified with oleic acid(SO-ZnAl LDH) was synthesized and added to the flame retardant ABS compounds containing brominated epoxy resin(BER) and antimony trioxide(${Sb_2}{O_3}$). Flame retardant ABS compounds were manufactured by using a twin-screw co-rotating extruder and subsequently injection molded into several specimen for flame retardancy and mechanical properties. The XRD patterns of ABS nanocomposites showed no peaks. The thermal stability of ABS nanocomposites was enhanced by the addition of SO-ZnAl LDH as shown in TGA results. However, these nanocomposites showed no rating in the UL 94 vertical test at 1.6 mm thickness. Only ABS nanocomposites with additional BER more than 1.5 wt% showed UL 94 V0 rating. Notched Izod impact strength, tensile modulus, and elongation at break of flame retardant ABS nanocomposites increased with the proportion of So-ZnAl LDH whereas their melt index decreased.

Effect of Coupling Agent and Fiber Loading on Mechanical Behavior of Chopped Jute Fiber Reinforced Polypropylene Composites (황마 단섬유 강화 폴리프로필렌 복합재료의 기계적 거동에 미치는 결합제 및 섬유 Loading의 영향)

  • Rasel, S.M.;Nam, G.B.;Byeon, J.M.;Kim, B.S.;Song, J.I.
    • Elastomers and Composites
    • /
    • v.46 no.3
    • /
    • pp.204-210
    • /
    • 2011
  • In this study, Jute fibers reinforced polypropylene (JFRP) composites were manufactured by injection molding technique. In order to improve the affinity and adhesion between fibers and thermoplastic matrices during manufacturing, Maleic anhydride (MA) as a coupling agent have been employed. Untreated and treated surfaces of jute fibers were characterized using SEM and Fourier transform infrared (FTIR). Physical properties like water absorption rate were studied. Tensile and flexural tests were carried out to evaluate the composite mechanical properties. Tensile test and bending test indicated that JFRP composites show higher strength and modulus than pure PP. In addition, strength and modulus were found to be influenced by the variation of MAPP content (1%, 2%, and 3%). Tensile fracture surfaces were examined using scanning electron microscope. It ensures better interfacial adhesion between fibers and matrix by increasing the percentage of MAPP.

Improvement of Wettability and Removal of Skin Layer on Ar-Plasma-Treated Polypropylene Blend Surface (폴리프로필렌 복합소재의 아르곤 플라즈마 처리로 표면층 제거와 젖음성 향상)

  • Weon, Jong-Il;Lee, Sun-Yong
    • Polymer(Korea)
    • /
    • v.36 no.4
    • /
    • pp.461-469
    • /
    • 2012
  • The surface modification and characterization of Ar-plasma treated polypropylene (PP) blend are investigated using x-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and contact angle measurement. An increase in Ar-plasma treatment time leads to an increase in wettability, oxygen containing polar functional groups, the amount of talc, and surface roughness on the PP blend surface. A careful observation using SEM indicates that there exists a skin layer consisting of only PP component. The difference in viscosity between PP and rubber particles facilities the formation of skin layer. However, it is found that an increase in Ar-plasma treatment time helps to decrease the thickness of skin layer. Additional methodologies for the elimination of skin layer during injection molding are also discussed. The surface modification and morphological alteration induced by Ar-plasma treatment provides a hydrophilic state, followed by the improvement in wettability, on the PP blend surface.

Phyllite as a New Flame Retardant Synergist for ABS Resin Containing Bromine Flame Retardant (브롬계 난연제를 사용한 ABS 수지에 대한 신규 난연 상승작용제로시의 천매암)

  • Kim, Seog-Jun
    • Elastomers and Composites
    • /
    • v.41 no.3
    • /
    • pp.172-181
    • /
    • 2006
  • Flame retardant synergism of phyllite was studied in ABS resins containing brominated flame retardant(tetrabromobisphenol A(TBBA) or brominated epoxy oligomer(BEO)) and antimony trioxide($Sb_2O_3)$. Talc was used for the comparison purpose. ABS compounds were manufactured by a twin-screw co-rotating extruder and subsequently injection molded into several specimen for mechanical and thermal properties. Flame retardancy of ABS compounds measured by UL 94 vertical test with 1.6 mm thick bar specimen was enhanced by the replacement of antimony trioxide into phyllite or talc in the range of 12.5%(0.5 wt%) to 37.5%(1.5 wt%). Phyllite showed better synergistic effect comparing with talc especially for BEO. Only phyllite enhanced the flowability of ABS compounds. Notched Izod impact strength decreased with the proportion of phyllite or talc content. Phyllite could replace the antimony trioxide up to the content of 25%(1 wt%) to give better flame retardancy and flowability without darkening problem.

A Study on the Fatigue Analysis of Glass Fiber Reinforced Plastics with Linear and Nonlinear Multi-Scale Material Modeling (선형과 비선형 다중 스케일 재료 모델링을 활용한 유리섬유 강화 플라스틱의 피로해석 연구)

  • Kim, Young-Man;Kim, Yong-Hwan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.2
    • /
    • pp.81-93
    • /
    • 2020
  • The fatigue characteristics of glass fiber reinforced plastic (GFRP) composites were studied under repeated loads using the finite element method (FEM). To realize the material characteristics of GFRP composites, Digimat, a mean-field homogenization tool, was employed. Additionally, the micro-structures and material models of GFRP composites were defined with it to predict the fatigue behavior of composites more realistically. Specifically, the fatigue characteristics of polybutylene terephthalate with short fiber fractions of 30wt% were investigated with respect to fiber orientation, stress ratio, and thickness. The injection analysis was conducted using Moldflow software to obtain the information on fiber orientations. It was mapped over FEM concerned with fatigue specimens. LS-DYNA, a typical finite element commercial software, was used in the coupled analysis of Digimat to calculate the stress amplitude of composites. FEMFAT software consisting of various numerical material models was used to predict the fatigue life. The results of coupled analysis of linear and nonlinear material models of Digimat were analyzed to identify the fatigue characteristics of GFRP composites using FEMFAT. Neuber's rule was applied to the linear material model to analyze the fatigue behavior in LCF regimen. Additionally, to evaluate the morphological and mechanical structure of GFRP composites, the coupled and fatigue analysis were conducted in terms of thickness.

Coupled Analysis with Digimat for Realizing the Mechanical Behavior of Glass Fiber Reinforced Plastics (유리섬유 강화 플라스틱의 역학적 거동 구현을 위한 Digimat와의 연성해석 연구)

  • Kim, Young-Man;Kim, Yong-Hwan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.6
    • /
    • pp.349-357
    • /
    • 2019
  • Finite element method (FEM) is utilized in the development of products to realistically analyze and predict the mechanical behavior of materials in various fields. However, the approach based on the numerical analysis of glass fiber reinforced plastic (GFRP) composites, for which the fiber orientation and strain rate affect the mechanical properties, has proven to be challenging. The purpose of this study is to define and evaluate the mechanical properties of glass fiber reinforced plastic composites using the numerical analysis models of Digimat, a linear, nonlinear multi-scale modeling program for various composite materials such as polymers, rubber, metal, etc. In addition, the aim is to predict the behavior of realistic polymeric composites. In this regard, the tensile properties according to the fiber orientation and strain rate of polybutylene terephthalate (PBT) with short fiber weight fractions of 30wt% among various polymers were investigated using references. Information on the fiber orientation was calculated based on injection analysis using Moldflow software, and was utilized in the finite element model for tensile specimens via a mapping process. LS-Dyna, an explicit commercial finite element code, was used for coupled analysis using Digimat to study the tensile properties of composites according to the fiber orientation and strain rate of glass fibers. In addition, the drawbacks and advantages of LS-DYNA's various anisotropic material models were compared and evaluated for the analysis of glass fiber reinforced plastic composites.