• Title/Summary/Keyword: 고무밴드

Search Result 15, Processing Time 0.017 seconds

A study of disposable micro dust-mask design for bicycle users (자전거 이용자를 위한 일회용 미세먼지 마스크 디자인 연구)

  • Kwon, Jun Ho
    • Journal of Digital Convergence
    • /
    • v.16 no.12
    • /
    • pp.571-577
    • /
    • 2018
  • Bicycle riders complain of many inconveniences when wearing glasses, sunglasses and masks. The disposable fine dust mask has been developed to resolve such inconveniences of bicycle riders. The scope of research is limited to the fiber which generates one-time static electricity and the shape of the mask due to the characteristic of fine dust mask. The purpose is to design and make the fine dust mask with a simple production process. The new disposable fine dust mask has secured enough space of the mask in front of the mouth by longitudinal folding and minimized stuffiness by maintaining the shape of the folded part to prevent touching the mouth even by heavy breathing. The streamlined sponge is attached at the part of nose support and the area of the cheek has been expanded to be about 2.5cm wider than ordinary masks to improve tight seal at the side. In addition, a new disposable fine dust scarf mask has been developed to block ultraviolet rays for the face and neck while filtering fine dust with the tight fine dust mask.

Morphological Assessment of Proximal Restoration Depending on Different Matrix Systems in Primary Molars with a 3D Scanner: In Vitro Studies (매트릭스 시스템에 따른 유구치 인접면 수복물에 대한 3D 스캐너를 이용한 형태학적 평가: 실험실적 연구)

  • Hyewon Shin;Nanyoung Lee;Joohun Song;JoonSeong Kim;Myeongkwan Jih
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.50 no.4
    • /
    • pp.396-408
    • /
    • 2023
  • The purpose of this study was to compare the proximal surface contour, size of contact area, and volume difference before and after restoration in artificial teeth of primary molars during proximal composite resin restoration using different matrix systems. Four types of artificial teeth were restored with composite resin using sectional matrix systems-Palodent V3 Sectional Matrix System and myJunior Kitand a circumferential matrix system-Tofflemire Matrix System-and modeled threedimensionally for analysis. When sectional matrix systems were used, there was a higher probability of concave proximal surface contour and simultaneously greater contact area and volume. This is attributed to the dead soft properties of the matrix band used in sectional matrix systems, which can lead to deformation of the band and hence an excessive amount of resin applied around the contact point. Additionally, the rubber wedge in the sectional matrix system may not help the matrix band fit into the cavity. Therefore, based on the findings of this study, morphological aspects need to be carefully considered for proximal composite resin restoration of primary molars using sectional matrix systems.

Preparation of Self-Assembled of $\alpha$-D-Mannosyl Fullerene[$C_{60}$]-Gold Nanoparticle Films (자기조립법에 의한 $\alpha$-D-만노실 풀러렌[$C_{60}$]-금 나노입자 필름 제조)

  • Yoon, Shin-Sook;Hwang, Sung-Ho;Ko, Weon-Bae
    • Elastomers and Composites
    • /
    • v.43 no.4
    • /
    • pp.264-270
    • /
    • 2008
  • $\alpha$-D-mannosyl fullerene[$C_{60}$]-functionalized gold nanoparticle films were selfassembled using the layer-by-layer method on the reactive of glass slides functionlized with 3-aminopropyltrimethoxysilane. The functionalized glass slides were alternately soaked in the solutions containing $\alpha$-D-mannosyl fullerene[$C_{60}$] and 4-aminothiophenoxide/hexanethiolate-protected gold nanoparticles. $\alpha$-D-mannosyl fullerene[$C_{60}$]-functionalized gold nanoparticle films have grown up to 5 layers depending on the immersion time. The self-assembled nanoparticle films were characterized using UV-vis spectroscopy showed that the surface plasmon band of gold at 530 nm gradually became more evident as successive layers were added to the films.

A Wearable Glove System for Rehabilitation of Finger Injured Patients (손가락 부상 환자의 재활을 위한 장갑형 웨어러블 시스템)

  • Ji-Hun Seong;Hyun-Jin Choi
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.2
    • /
    • pp.379-386
    • /
    • 2023
  • When patients suffer from finger injuries, their finger joints can become stiff and inflexible due to decreased ability to exercise the finger tendons. This can lead to a loss of strength and difficulty using their hands. To address this, it is important to provide patients with consistent rehabilitation treatment that can help restore finger flexibility and strength simultaneously. In this study, we propose wearable gloves that use FSRs (force sensitive resistors) for finger strength training. The glove is designed to be adjustable using rubber bands and a custom PCB is designed for signal acquisition. For the evaluation of finger strength training, the result was analyzed in four cases. We suggest a vector that represents the center of five finger forces, and the result shows that the vector can indicate the level of force balance.

Fabrication of a Mach-Zehnder interferometer for education using a rotating glass plate and a 3D printer (회전 유리판과 3D 프린터를 이용한 교육용 마흐젠더 간섭계 제작)

  • Jang, Seong-Hun;Ju, Young-G
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.5
    • /
    • pp.213-220
    • /
    • 2017
  • This paper proposes how to fabricate an educational Mach-Zehnder interferometer that is easy to align and inexpensive, using 3D printers and semiconductor lasers. The interferometer consists of a body $165mm{\times}120mm{\times}57mm$ in size, mirror mounts, a laser holder, beam splitters, and so on. The laser path is adjusted by 4 mirror mounts, each comprised of rubber bands, small metal wires, and a screw. The interference fringe is enlarged by the lens at the final stage. The refractive index of a slide glass was measured by counting the number of moving interference fringes while the slide glass, inserted into one of the two interferometer arms, is rotating. The formula for the refractive index as a function of the optical-path difference and rotation angle was obtained, and used to calculate the refractive index of glass from the interferometer experiment. The use of a rotating glass in one arm of the interferometer nullifies the need for a precision stage, which despite its high cost is often required to observe the moving interference fringe in the classroom. Therefore, the 3D-printed Mach-Zehnder interferometer proposed in this paper can be very useful for education, because of its affordability and performance. It enables students to perform both qualitative and quantitative studies using a 3D-printed interferometer, such as measuring the refractive index of a glass sample, and the wavelength of light.