• 제목/요약/키워드: 고무마운트

검색결과 66건 처리시간 0.02초

자력을 이용한 하이브리드 고무 마운트 (Hybrid Rubber Mount by Using Magnetic Force)

  • 안영공;김동우
    • 한국소음진동공학회논문집
    • /
    • 제24권3호
    • /
    • pp.236-246
    • /
    • 2014
  • This paper presents a hybrid rubber mount with magnet to isolate effectively the vibration in vehicle, forklift, and so on. The hybrid mount does not have any controller of the magnetic force. Dynamic stiffness of the mount is reduced by only magnetic suction according to the applied magnetic field and damping coefficient increased. Performance of conventional rubber mount with using electromagnet has been investigated by MTS Tester. The governing equation of the hybrid mount was derived and verified by comparison with experimental and theoretical results. The equation can be used practically and usefully in the design of the mount and analysis of the mounting system. The hybrid mount provides excellent performance in vibration isolation and its structure is very simpler than active with controller and a semi-active mount with a functional fluid. Furthermore, production cost of the mount using permanent magnets is very lower than that of the active mount with electromagnets. Therefore, commercial potential of the mount is very high.

전자기 작동기와 고무를 이용한 하이브리드 마운트의 설계 및 진동제어 응용 (Design of Hybrid Mount Using Rubber and Electromagnetic Actuator with Application to Vibration Control)

  • 팽용석;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.915-918
    • /
    • 2006
  • This paper presents an active vibration control of a 1-DOF system using a hybrid mount which consists of elastic rubber and electromagnetic actuator. After identifying stiffness, damping properties of the elastic rubber and electromagnetic element, a mechanical model of the hybrid mount is established. The mount model is then incorporated into the 1-DOF system and the governing equation of motion is obtained in a state space. A sliding mode controller is designed in order to actively attenuate the vibration of the system control responses such as acceleration and transmitted force of the 1 -DOF system are presented in time domain.

  • PDF

하이브리드 마운트를 이용한 빔구조물의 진동제어 (Vibration Control of a Beam Structure Using Hybrid Mounts)

  • 김승환;홍성룡;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.440-445
    • /
    • 2002
  • A hybrid mount featuring elastic rubber and piezoelectric material is devised and applied to the vibration control of a beam structure. The governing equation of the beam structure associated with the hybrid mount is derived. Subsequently, a robust sliding mode controller is designed to attenuate the vibration of the beam structure due to external excitation. The controller is then simulated and control responses such as displacement and transmitted force are evaluated in time and frequency domains.

  • PDF

방진 마운트의 동적 강성을 고려한 선체 바닥 및 받침대의 강성과 임피던스 규제에 대한 고찰 (Investigation for the Restriction of the Stiffness and Mechanical Impedance of the Shipboard Floor and Foundation Considering Dynamic Stiffness of the Anti-Vibration Mount)

  • 한형석;손윤준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.511-517
    • /
    • 2009
  • The mechanical impedance and stiffness of the foundation of shipboard equipments and hulls supported by anti-vibration mount are very important so that the anti-vibration mount can accomplish its performance effectively. But, it is frequently argued how much stiffness and mechanical impedance are necessary for those foundations and hulls. In this research, it is discussed by evaluating the dynamic stiffness of the commercial anti-vibration mounts used in a naval vessel. Consequently, in this research, the minimum level of the mechanical impedance and stiffness of the foundation of shipboard equipments and hulls are suggested considering the dynamic stiffness of the mount which varies as frequency.

  • PDF

하이브리드마운트를 이용한 빔 구조물의 능동진동제어 (Active Vibration Control of a Beam Structure Using Hybrid Mount)

  • 김승환;홍성룡;최승복
    • 한국소음진동공학회논문집
    • /
    • 제13권7호
    • /
    • pp.524-531
    • /
    • 2003
  • This paper presents an active vibration control of a flexible beam structure using a hybrid mount which consists of elastic rubber and Piezoelectric material. After identifying stiffness and damping properties of the rubber and piezoelectric elements, a mechanical model of the hybrid mount is established. The mount model is then Incorporated into the beam structure, and the governing equation of motion is obtained in a state space. A sliding mode controller is designed in order to actively attenuate the vibration of the beam structure subjected to high frequency and small magnitude excitations. The controller is experimentally realized and control responses such as acceleration of the beam structure and force transmission through the hybrid mount are evaluated. In addition. a comparative work is done between the passive and hybrid mount systems.

유압 엔진 마운트의 동특성 해석 컴퓨터 시뮬레이션 방법 연구 (A Computer Simulation Method for Dynamic Analysis of Hydraulic Engine Mount System)

  • 임홍재;최동운;이상범
    • 소음진동
    • /
    • 제9권1호
    • /
    • pp.42-48
    • /
    • 1999
  • In this paper, a computer simulation method for dynamic analysis of the hydraulic engine mount system is proposed. The hydraulic engine mount system controls the damping characteristics using the viscosity of fluid flow The complex stiffness of the main rubber of the hydraulic engine mount system is computed by finite element analysis for the viscoelastic materials and hydro-static elements. A numerical analysis method is presented to solve nonlinear equations of the hydraulic engine mount system. which is composed of an engine mass, fluid in inertia track and a vertical inertia force of reciprocating mass in the engine. Also. dynamic properties of the hydraulic engine mount system are analyzed in the frequency domain. Effects of the hydraulic engine mount system running over the rough road are investigated using a vehicle dynamic model. These results are compared with those of the rubber mount system.

  • PDF

방진 마운트의 동적 강성을 고려한 선체 바닥 및 받침대의 강성과 임피던스 규제에 대한 고찰 (Investigation for the Restriction of the Stiffness and Mechanical Impedance of the Shipboard Floor and Foundation Considering Dynamic Stiffness of the Anti-vibration Mount)

  • 한형석;손윤준
    • 한국소음진동공학회논문집
    • /
    • 제19권3호
    • /
    • pp.320-326
    • /
    • 2009
  • The mechanical impedance and stiffness of the foundation of shipboard equipments and hulls supported by anti-vibration mount are very important so that the anti-vibration mount can accomplish its performance effectively. But, it is frequently argued how much stiffness and mechanical impedance are necessary for those foundations and hulls. In this research, it is discussed by evaluating the dynamic stiffness of the commercial anti-vibration mounts used in a naval vessel. Consequently, in this research, the minimum level of the mechanical impedance and stiffness of the foundation of shipboard equipments and hulls are suggested considering the dynamic stiffness of the mount which varies as frequency.

마운트 형상에 따른 선박용 해수 이송 배관의 진동 전달률 감소 (Reduction of the Vibration Transmissibility for the Sea-Water Conveying Pipe in a Ship According to its Mount Shape)

  • 한형석;정의봉;차영주
    • 대한조선학회논문집
    • /
    • 제45권6호
    • /
    • pp.688-694
    • /
    • 2008
  • The reduction of the structure-borne noise is very important in order to reduce the noise of a ship. The noise at the high frequency range usually comes from the fluid flowing. The noise from the sea-water conveying pipe is one of the main source on these high frequency range. Therefore, the transmissibility variations are evaluated according to the shape of the rubber mount. The evaluations are performed with the frequency response function numerically and experimentally.

고무 재질 탄성 마운트의 비선형 대변형 거동 해석 (Non-linear Large Deformation Analysis of Elastic Rubber Mount)

  • 노인식;김종만;곽정석
    • 대한조선학회논문집
    • /
    • 제45권2호
    • /
    • pp.186-191
    • /
    • 2008
  • A lot of equipments installed in ships must be isolated for relaxing the shock, vibration and noise using the elastic mounts. Most of the elastic mounts are made of the rubber, however it is not easy to design the effective rubber mount. Because, in general, the rubber has a non-linear constitutive characteristics especially for a large deformation. So, there are many difficulties to estimate the accurate structural response of rubber which is the basis of the shape design of the mounts. In this study, the detailed non-linear viscoelastic large deformation finite element analysis method was dealt with. And to verify validity of the present analysis scheme, the results were compared with experiments.

압전작동기를 이용한 무인항공기 EO/IR 센서 마운트의 능동 진동 제어 (Active Vibration Control of UAV EO/IR Sensor Mount Using Piezoelectric Actuator)

  • 박동현;최승복
    • 한국소음진동공학회논문집
    • /
    • 제18권12호
    • /
    • pp.1278-1285
    • /
    • 2008
  • This paper presents an inertia type of piezostack based active mount fur unmanned aero vehicle (UAV) camera system. After identifying the stiffness and damping properties of the rubber element and piezostack a mechanical model of the active mount system is established. The governing equation of mount is then derived and expressed in a state space form. Subsequently, a sliding mode controller which is robust to uncertain parameters is designed in order to reduce the vibration imposed according to the military specification associated with UAV camera mount system operation. Control performances such as acceleration and transmitted force are evaluated through both computer simulation and experimental implementation.