Fe(0)촉매하에서 이중고리 생성물이 얻어지는 acetylenic diene을 반응시켜 분자내 [4+2]고리화 첨가반응을 조사하였다. 위 반응은 이분자 첨가반응과 분자내 탄소 고리화 반응이 경쟁적으로 진행된다고 알려져 있다. 그러나 Fe(0)촉매하에서 4,4-dimethyl-3-(tert-butyldimethylsiloxy)-1-phenyl-6,8-decadien-1-yne(11)의 고리화 반응은 단지 이중고리 생성물만이 얻어졌다(수득율 78.1%). 이 결과에서 dienyne의 4,4-위치에 치환된 dimethyl기가 Fe(0)촉매하의 고리화 반응조건에 안정함으로 인하여 분자내 고리화 반응이 촉진되는 것으로 생각된다.
쥐의 뇌에서 추출한 입자상 아데닐산 고리화효소와 입자상 구아닐산효소의 활동성에 미치는 몇 가지 긴세노시드들의 효과를 조사하였다. $Rb_{2},\;Rb_{1}$, Rc 및 Re들과 같은 약간의 진세노사이드들이 두 효소들의 활동성을 상반적으로 변화시키는 것을 관찰하였다. 아데닐산 고리화효소와 구아닐산 고리화효소의 활동성에 미치는 GMP 및 AMP의 조절작용을 조사하였다. 긴세노시드 Rd로 방해된 아데닐산고리화효소는 GMP를 첨가함에 따라서 활성화되었다. 마찬가지로. 긴세노시드 $Rb_{2}$로 방해된 아데닐산 고리화효소도 GMP에 의해서 활성화되었다. 다른 한편, 긴세노시드 Rc로 활성화된 구아닐산 고리화효소는 AMP 또는 GMP를 첨가함에 따라서 방해되었다. 진세노사이드 $Rb_{2}$ 도파민 사이에는 아데닐산 고리화효소 계상의 수용체들에의 결함에 있어서 경쟁적이라는 것을 알았다. 이 결과는 긴세노시드 $Rb_{2}$가 세포의 D-1 도파민 수용체에 특이하게 결합한다는 것을 말해 준다.
기계학습의 군집화(clustering) 기법은 예제들 간의 유사성에 근거하여 주어진 예제들을 무리 짓는 방법이다. 준감독(semi-supervised) 군집화는 카테고리가 부여된(labeled) 소수의 예제들을 적극적으로 활용하여 군집형태가 보다 자연스럽게 형성되도록 유도하는 군집화 방법이다. 준감독 군집화 문제에서 예제에 카테고리를 부여하는 작업은 현실적으로 극히 제한적이거나 카테고리를 부여하는데 소요되는 비용이 상당하므로, 제한된 자원 내에서 군집화에 효용성이 높을 예제들을 선정하여 카테고리를 부여하는 것이 필요하다. 본 논문에서는 기존 연구에서 능동적 학습의 초기 훈련예제 선정을 위해 제안된 군집기반 훈련예제 선정 방법을 준감독 군집화에 적용하여 군집 결과의 질을 향상시키고자 한다. 군집화를 이용한 예제 선정 방법은 유사한 예제들은 동일한 카테고리에 속할 가능성이 높다는 가정하에 전체 예제를 활용하여 선정하고자 하는 예제 수만큼 군집을 생성 한 후. 각 군집의 중심점에 가장 가까운 예제들을 대표 예제로 선정하여 훈련 집합을 구성하는 방법이다 본 논문에서는 문서를 대상으로 하는 준감독 군집화 실험을 통해, 카테고리를 부여할 예제를 임의로 선정한 경우에 비해 군집화를 이용한 훈련 예제들로 준감독 군집화를 수행한 경우가 보다 좋은 군집을 형성함을 확인하였다.
폴리알킬렌테레프탈레이트 (PAT)의 고리 올리고머의 몰 고리화 정수(molar cyclization equilibrium constants)를 회전 이성 상태 (rotational isomeric state) (RIS) 모델에 의해Monte Carlo 모사로부터 얻었다. Jacobson-Stockmayer 이론과 이를 보완한 Flory, Suter, 그리고 Mutter의 방법으로는 각 PAT의 고리 올리고머의 함량과 분포를 잘 설명할 수 없었다. RIS모델을 이용한 직접 계산법으로는 반응거리를 ${\gamma}$=0.5 < ${\gamma}^{2}$> $^{1/2}$로 잡아준 경우에 모든 PAT에 대해서 실험치에 가까운 고리 올리고머의 분포를 얻었다. 또한 각 PAT의 입체형태의 변화에 따른 몰고리화 정수의 변화를 고찰하기 위하여 PAT 반복단위 중의 통계적 가중치 rl과 필를 변화시키면서 각 PAT의 몰 고리화 정수를 구하였다. 여러 반응거리와 ${\gamma}$=0.5 < ${\gamma}^{2}$> $^{1/2}$로 설정한 경우에 ${\sigma}_{1}$과 ${\sigma}_{2}$의 변화에 모든 PAT의 평형 고리 올리고머의 함량이 약간 변하기는 하나 그 분포는 그대로유지되었다. 각 PAT의 몰 고리화 정수는 주어진 입체배열에 의해서 일차적으로 결정이 되며 입체형태의 변화에 의해서도 다소 영향을 받는다는 것을 알았다.
초기에 하나의 상품 카테고리만을 다루던 전자상거래 사이트들이 브랜드 확립 후에 다른 상품 카테고리까지 확대해 나가는 모습을 많이 보아왔다. 고객이 아직 방문하지 않은 신규 상품 카테고리의 상품에 대하여 기존 상품 카테고리에서 만들어진 사용자 프로파일을 활용하여 개인화된 추천을 할 수 있다면, 고객이 다양한 상품 카테고리를 방문하도록 유도할 수 있을 것이다. 하지만 일반적으로 전자상거래 사이트에서는 상품 카테고리별로 사용자의 선호도를 파악하여 개인화된 추천을 수행하기 때문에, 해당 카테고리 내 상품의 구매나 방문 기록이 없다면 개인화된 추천을 수행하기가 어렵다 . 본 논문에서는 협업 필터링을 통해 신규 상품카테고리 내의 상품을 추천하기 어려운 고객들을 대상으로 기존의 사용자 선호도 데이터를 활용하여 신규 상품 카테고리 내의 상품을 추천하는 방안의 타당성을 살펴보도록 한다. 즉, 기존 사용자의 특정상품 카테고리 선호도 데이터를 통해 사용자간 유산도를 계산하고, 이를 추천하려는 타 상품 카테고리 내의 상품들에 대한 예측 선호도 계산에 활용 타당성을 살펴본다. 이를 실증적으로 검토하기 위해서, Yes24 사이트의 서적, 음반, DVD 3개의카테고리 내의 상품을 방문한 웹 패널 데이터를 이용하여 타당성 분석을 수행하였다. 분석 결과, 동일 상품 카테고리 내의 선호도 정보를 가지고 현업 필터링을 수행하는 것보다는 추천 성과가 낮았지만 활용할만한 추천 성과를 보였으며, 활용하는 상품 카테고리와 예측하는 상품 카테고리별로 추천성과가 상이했다.
Aromatic pelybenzoxazoles(PBOs) display excellent thermal stability plus good solvent and chemical resistance. Wholly aromatic PBOs, in fact, are soluble only in strong acids(e.g., sulfuric, rmethanesulfonic, triflic, and polyphosphoric acids). However, fully heterocyclized polymers have shown some drawbacks in solubility and processing. This problem of processing is currently being exploited to obtain unusual combinations of physical properties in fibers and films. (omitted)
경쟁 1,2-와 1,4-고리화첨가반응에 대한 frontier 분자궤도와 전전자에너지의 상관도를 작도하고 이 상관도에 의해서 반응기구를 설명할 수 있었다. 고찰해서 유도된 중요 결론은 다음과 같다. 1) HO와 LU사이에 교차가 일어나지 않았다. 그러므로 반응은 열반응이다. 2) diradical을 경유하는 이단계기구가 일단계기구 보다 에너지장벽으로 미루어 보아 유리하다. 3) [2+2]와 [2+4] 고리화첨가물의 생성물분포를 예측할 수 있다.
마이오 이노시톨을 이용한 새로운 고분자 리간드를 합성하였다. 형태적으로 안정한 이노시톨 고분자를 얻기 위해 고리화 고분자반응을 시도하였으며, 고리화의 메커니즘 및 고리 구조가 입증되었다. 또한, 분광학적 비교 방법을 이용해 합성된 고분자들의 형태가 밝혀졌다. 마이오 이노시톨 카보네이트를 이용해 형태적으로 고정된 고분자 리간드를 성공적으로 합성하였다.
본 논문에서는 내용 기반 이미지 검색 및 필터링 시스템을 위한 카테고리 식별 방법을 제안한다. 제안된 방법에서는 식별 가능한 카테고리를 사전에 정의하고, 정의된 카테고리를 대표할 수 있는 이미지들을 수집한다. 다음으로, 이들로부터 다중의 내용 기반 특징값을 추출하고, 추출된 특징값들로 카테고리 데이터베이스를 구성한다. 카테고리를 식별할 질의 이미지가 입력으로 들어오면, 질의 이미지로부터 추출된 다중 특징값들을 각 카테고리의 단일 특징값과 각각 비교함으로써, 카테고리를 대표하는 다중의 유사도 거리값을 측정한다. 각 카테고리를 대표하는 다중의 유사도 거리값들은 두 가지 연산 방법에 의해 조합되는데, 조합 방법은 각각의 단일 특징값이 각 카테고리 식별에 미치는 영향을 고려하여 정의된다. 최종적으로, 각 카테고리의 조합된 유사도 거리값을 비교한 다음, 가장 유사도가 큰 카테고리를 해당 질의 이미지의 카테고리로 식별한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.