• Title/Summary/Keyword: 고령토

Search Result 118, Processing Time 0.025 seconds

Genesis of Kaolin-Pyrophyllite Deposits in the Youngnam Area (영남지역 고령토-납석 광상의 성인 연구)

  • Sang, Ki-Nam
    • Economic and Environmental Geology
    • /
    • v.25 no.2
    • /
    • pp.101-114
    • /
    • 1992
  • Occurrences of many kaolin-pyrophyllite deposits in the Youngnam area is related to the Late Cretaceous volcanic rocks, which are widely distributed through southern part from Tongnae-Yangsan to Miryang-Wolsung. The mode of occurrence and genesis of the kaolin-pyrophyllite deposits related to the volcanism was studied. This area is covered by andesitic rocks, rhyolite and rhyolitic welded tuff in ascending order. Lower most andesitic part is almost fresh. The altered rocks in the rhyolitic welded tuff can be classified into the following zones: silicified, pyrophyllite-kaolin, and argillic zone from the center part of ore deposit. The clay deposits occur as irregular massive, layer and funnel type about 5~20 m in width and is accompanied by thin diaspore bed outside of ore shoot. The clays chiefly consist of kaolinite, sericite, pyrophyllite, a little amount of diaspore, alunite, dumortierite, corundum and pyrite. The process of kaolinization-pyrophyllitization has a close relation to a local acidic hydrothermal solution originated from granitic rocks. Acidic hydothermal alteration occurrs mainly in the rhyolitic welded tuff. Initial solution containing $H_2S$ and others was oxidized near the surface and formed hydrothermal sulfuric acid solution.

  • PDF

광물재료를 이용한 연약지반 점토의 고화안정처리 실험

  • 황진연;류춘길;강병주;김병규
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2001.06a
    • /
    • pp.7-7
    • /
    • 2001
  • 다량의 점토 퇴적물로 구성된 연약지반은 대단히 큰 압축성과 낮은 강도, 높은 함수량등의 물리·역학적 특성을 갖는다. 이러한 기초지반으로서의 불리한 특성 때문에 이를 대상으로 하는 각종 토목건설공사에서는 지반개량이나 안정처리가 반드시 선행되어야 할 과제이다. 이를 위해 종래에는 샌드드레인, 페이퍼드레인 등의 물리적인 공법에 의한 지반개량이 주류를 이루었으나, 최근에는 생석회나 시멘트계 고화재를 이용한 화학적 안정 처리공법이 크게 주목을 받고 있어 이에 대한 연구가 활발한 상황이다. 본 연구는 연약 지반 안정처리에 대한 방안을 모색하기 위하여 김해 지역에 분포하는 점토 퇴적물을 대상으로 각종 광물재료를 이용한 반응실험을 통하여 반응생성물 조사와 압축강도시험 등을 행하여 그 결과를 검토하였다. 우선 연약지반의 고화에 이용 가능한 생석회, 석고, 플라이에쉬, 고분자폴리머, 시멘트 등을 사용하여 점토와 혼합한 고화실험을 행하였으며, 이에 대한 물성 및 반응생성물을 검토하였다. 이러한 각 재료를 점토에 혼합한 후 PVC관에 모울딩하여 양생시켜 실험하였다. 그 결과, 석고 및 소석회에 비하여 생석회의 경우가 비교적 큰 압축강도를 나타내고, 균열발생 빈도도 낮았다. 생석회의 경우에 Gehlenite, Hillebrandite 등의 생성물질이 검출되었다. 그러나 포틀란트 시멘트와 혼합한 경우가 강도가 가장 크게 나타났다. 반면에 고분자폴리머만 사용한 경우는 강도가 매우 낮았다. 따라서 시멘트를 일정 비율로 배합한 다른 재료를 첨가한 실험을 행하여 그 물성을 검토하였다 물질의 화학적인 특성을 고려하여 포졸란반응이 잘 일어날 수 있을 것으로 생각되는 여러 재료를 선정하여 많은 조합에 대한 실험을 행하였다. 생석회, 석고, 고령토, 규조토, 제올라이트 등의 여러 재료를 여러 조합으로 첨가하여 실험한 결과, 시멘트와 석고를 혼합한 것이 비교적으로 높은 압축강도를 나타내었다. 그리고 이러한 연구 결과를 바탕으로 연약점도의 고화에 최적인 조합과 배합비를 위한 실험을 재차 실시하였으며, 실험 후의 물성과 함께 반응생성물에 대한 검토도 행하여 그 결과를 발표하고자 한다.

  • PDF

A Study on Adsorption of Lead(II) in Wastewater Using Natural Kaolinite (천연 고령토의 폐수 중 납 흡착에 관한 연구)

  • 이종은
    • Journal of Environmental Health Sciences
    • /
    • v.21 no.3
    • /
    • pp.77-86
    • /
    • 1995
  • Lead(II) removal efficiency by natural kaolinite was investigated through laboratory experiments. This study was conducted in two phases-sorption and desorption. In the adsorption study, the influence of sorption kinetics and sorption isotherm and various parameters such as pH, temperature, coexisting other heavy metal ions on the lead adsorption was investigated. And desorption study was carried out in order to find the re-usability of kaolinite as an adsorbent. The results of the study are as follows. 1. Sorption kinetics was investigated under the condition of 2.5 mg/l adsorbent concentration, pH 6.5$\pm$0.05, temperature $30\pm 0.5\circ$C, initial lead(II) concentration 25 mg/l. Adsorption rate was initially rapid and the extent of adsorption arrived at adsorption equilibrium with 73% adsorption efficiency in an hour. 2. The sorption isotherm experiment was made with different initial lead(II) concentration. A linearized Freundlich equation was used to fit the acquired experimental data. As a result, Freundlich constants, the sorption intensity (1/n) was 0.47 and the measure of sorption (k) was 2.44. So, it was concluded that sorption of lead(II) by kaolinite is effective. 3. The effect of pH on lead(II) sorption by kaolinite shows that at a pH of 3, only 6% of the total lead(II) was adsorbed and at a pH 9, 97% of the lead(II) was removed. And the effect of temperature on lead(II) sorption by kaolinite shows that as the temperature increased, the amount of lead(II) sorption per unit weight of kaolinite increased. But the effect was minor (p<0.05). 4. Sorption isotherm of lead coexisting cadmium (II) or zinc (II) was lower than that of lead itself. It was caused by the result of competitive sorption to adsorption site. And there was no difference between the sorption isotherm of cadmium and zinc. 5. In desorption studies, only 5.12% desorption took place in distilled water, while 52.08% in 0.1 N hydrochloric acid. Consequently used kaolinite could be regenerated by hydrochoric acid.

  • PDF

K-Ar Ages of Alunite and Sericite in Altered Rocks, and Volcanic Rocks around the Haenam Area, Southwest Korea (해남지역(海南地域) 화산암류(火山岩類)와 납석 및 고령토 광상(鑛床)의 K-Ar 연대(年代))

  • Moon, Hi-Soo;Kim, Young Hee;Kim, Jong Hwan;You, Jang Han
    • Economic and Environmental Geology
    • /
    • v.23 no.2
    • /
    • pp.135-141
    • /
    • 1990
  • A number of alunite and pyrophyllite deposits occur around the Haenam area where Cretaceous volcanic and volcanogenic sediments are widely distributed. The K-Ar ages of alunite, sericite and whole rocks collected from alunite and pyrophyllite deposits and unaltered rocks representing various stratigraphic horizon of the area were determined and their formation stage was discussed. The ages of volcanic rocks range between $68.6{\pm}1.9$ and $94.1{\pm}2.0$ Ma corresponding to Cenomanian-Maastrichtian of upper Cretaceous. Andesitic rock gives $94.1{\pm}2.0$. Rhyolite and acidic tuffs give $79.47{\pm}1.7$ and $82.8{\pm}1.2$ Ma corresponding to Campanian. The later stage andesite gives $68.6{\pm}1.9$ Ma of Maastrichtian. The results suggest that volcanism of the area can be devided into three different stages. The ages of alunite and sericite range $71.8{\pm}2.8$ to $76.6{\pm}2.9$ Ma of late Campanian to early Maastrichtian which is rather earlier than the age of granite(67 Ma). It indicates that the alteration ages of these clay mineral deposits appeared to be related with its volcanism rather than the hydrothermal stage of granite of this area.

  • PDF

An Experimental Study for Estimation of Erosion Rate of Fine Cohesive Sediments (미세-점착성 퇴적물의 침식률 산정을 위한 실험적 연구)

  • Hwang Kyu-Nam;So Sang-Don;Kim Tae-Min
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.2
    • /
    • pp.119-128
    • /
    • 2005
  • An annular flume has been constructed in order to estimate the erosion rate of fine cohesive sediments. Under an uniform bed condition, some erosion tests for Kaolinite sediments have been conducted to examine the performance of the flume and to check the validity of experimental method and results. In this study, the critical shear stress for erosion and the erosion rate coefficient are estimated and compared with the existing measurements. It is concluded that the performance of the annular flume is good enough to conduct erosion tests and the experimental method and results are valid.

An Experimental Study for The Solidifying of Clay Sediments Consisting Soft Foundation By Using Cement and Mineral Admixtures (시멘트 및 광물재료를 이용한 연약지반 점토의 고화실험)

  • Hwang Jin-Yeon;Kang Byung-Joo;Lee Hyomin;Um Jeong-Gi;Cho Tae-Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.4 s.46
    • /
    • pp.301-312
    • /
    • 2005
  • The present study investigated the physical changes and reaction products with setting time after mixing of various mineral admixtures such as lime, hydrated lime, gypsum, kaolin, zeolite and diatomaceous earth with four types of cement (portland cement, slag cement, quick lime, hydrated lime) and clay rich sediments in soft foundation. As results, slag cement showed the greater compressive strength than normal portland cement. The mixing experiments with various mineral admixtures and slag cement resulted that gypsum showed the greatest compressive strength. Additionally, we conducted mixing experiments with various mixing ratios of gypsum and slag cement. The experiments showed that the mixing ratio of $30\%$ gypum and $70\%$ slag cement has the greatest compressive strength. Ettringite was produced as a reaction Product. This fact indicates that gypsum effectively promotes hydration reaction and contributed to the greater compressive strength. These experimental results can be used as fundamental data for the stabilization of soft clay foundation.

A Laboratory Study on Rheological Properties of Fluid Mud (머드유동층의 유동학적 특성에 관한 실험적 연구)

  • Nguyen, Dinh Phuc;Jung, Eui-Taek;Park, Kun-Chul;Hwang, Kyu-Nam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.3
    • /
    • pp.203-209
    • /
    • 2012
  • In this study, rheological properties of kaolinite and three different porcelain fluid muds are quantitatively estimated with the latest rheometer, in which variations of their viscosities and yield stresses with their densities are estimated. This study also involves the measurements for the basic physico-chemical properties of fluid muds and the qualitative analysis of their correlation between physico-chemical and rheological properties. Experimental results of rheological tests show that fluid muds in general belong to Pseudo-plastic fluids and both viscosities and yield stresses of them increase exponentially with the increase of density while they are remarkably different in quantity depending on sediments.

Occurrence of Gold Deposits of the Tumbang Lapan Area of the Middle Kalimantan, Indonesia (인도네시아 중부 칼리만탄 뚬방라판 지역 금광상의 산상)

  • Kim In-Joon
    • Economic and Environmental Geology
    • /
    • v.38 no.3 s.172
    • /
    • pp.347-353
    • /
    • 2005
  • The geology of the Tumbang Lapan area consists of Permian to Carboniferous metamorphic rocks, Cretaceous granitic rocks, and Permian to Tertiary sedimentary and volcanic rocks. Three faults are developed in surveyed area, and are functioned as channels of the hydrothermal solution which farmed quartz veins within tuff3. In the mineralized area, argillic and propylitic alterations are dominant. Argillic altered rocks show the alteration mineral assemblages of kaolinte+sericite+quartz+chlorite+pyrite. Mineral association in propylitic alteration is chlorite+epidote+feldspar+quartz+pyrite+ magnetite. Vein type, fracture filling, stockwork are observed in survey area. As a result of analysis of samples from quartz veins and altered rocks, some mineralized rocks showed $0.01\~4.6g/t$ of gold.

Measurement of Settling Velocity, Size and Density and Analysis of Fractal Dimension of Cohesive sediment (점착성 유사의 침강속도, 크기, 밀도 측정 플랙탈 차원 분석)

  • Son, Min-Woo
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.1
    • /
    • pp.58-65
    • /
    • 2011
  • This study aims to investigate the settling velocity of aggregates of cohesive sediment (floc) and its relationship with sediment size, density and fractal dimension. A system of commercial camera and macro-lens is used for the experiment. Through the image-analysis technique, the image taken by the camera system is analyzed. For the experiment, kaolinite and a natural sediment sampled at Lake Apopka in Florida have been tested. From this study, it is known that kaolinite and Lake Apopka sediments show different behaviors mainly depending on the organic matter content. Samples of kaolinite with less organic contents show a more definite trend to follow a fractal theory and relatively strong relationships between the settling velocity, density, fractal dimension and floc size compared to the Lake Apopka sediments rich in organics.

A Study on the Properties of Traditional Korean Roof Tile by Using Nano Alumino Silicate (전통한식기와의 나노알루미노실리케이트 첨가에 따른 성능연구)

  • Kim, Soon-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.5
    • /
    • pp.425-432
    • /
    • 2020
  • The appearance of Korean traditional roof tiles is beautiful and excellent in water resistance, fire resistance and durability, but a high sintering temperature of 1,200℃ or higher is required. Therefore, due to the economical and heavy weight problem, the current trend is to use different roof finishing materials than Korean traditional roof tiles. By adding nanoaluminosilicate to clay and kaolin, which are the materials of the clay roof tiles, the sintering temperature is sintered at a low temperature of 1,000℃ or less, and the optimal mixing and material process is designed to satisfy the characteristics required as a Korean traditional roof tile. The results of this study again demonstrate the superiority of Korean traditional tiles with roof finishing materials using nanoaluminate. The properties of Korean traditional roof tiles that satisfy the criteria of KS F 3510 by applying fire resistance of natural minerals and nanoparticle technology to flexural strength of 2800N, Bulk specific gravity of 2.0g/㎤ and absorption rate of less than 10.0%, through which and researched materials development.