• Title/Summary/Keyword: 고등학교 과학 교과서

Search Result 236, Processing Time 0.028 seconds

A Study of the Curricular Articulation of Oxidation-Reduction in the Textbooks from Middle School to College (중등 및 대학 교재 중 산화-환원반응에 대한 연계성 연구)

  • Kim, Hyo-Kyum;Moon, Seong-Bae
    • Journal of the Korean Chemical Society
    • /
    • v.44 no.2
    • /
    • pp.145-156
    • /
    • 2000
  • The content of oxidation-reduction in the chemistry textbooks from middle school to college was analyzed about the effective connection of curricular articulation. The classification was divided from five groups of 'first concept', 'same concept', 'overlap', 'development', and 'gap'. As a results, there was a deep big gap from middle school to high school and the effectiveness from high school to college was quite acceptable. Finally, the flow map, consisted of each concept between the school unit, was suggested.

  • PDF

An Analysis of Concepts related to Physical and Chemical Change on Middle and High School Science Textbooks (물리변화와 화학변화에 대한 중등학교 과학 교과서의 개념 분석)

  • Seoung-Hey Paik;Sun Kyoung Kim
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.2
    • /
    • pp.155-164
    • /
    • 2003
  • This study examined the types of explanations related to physical change and chemical change in the science textbooks of middle and high school based on the prior study of science teachers' understanding. For this research, the researchers analyzed 44 textbooks of middle school science and high school chemistry. As a result, there were no explanation or property type explanation represented in most of the textbooks related to physical and chemical change concepts. Also, there are few relationship represented between physical change and chemical change, and the examples related to physical change and chemical change were confused. These representations of textbooks can give rise to confusion of understanding of teachers and learners. So, it needs to re-design the explanation types correctly and constantly in science textbooks related to physical change and chemical change.

Analysis and Improvement of Experiments for Electrolysis of an Aqueous CuCl2 Solution in High School Science Textbooks (고등학교 과학 교과서에 제시된 염화구리(II) 수용액의 전기분해 실험의 분석 및 개선)

  • Park, Guk-Tae;Jo, Yeong-Ja;Lee, Ji-Yeong;Park, Gwang-Seo
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.4
    • /
    • pp.328-337
    • /
    • 2006
  • purpose of this study was to find out problems in experiments for electrolysis of an aqueous CuCl2 solution in high school science textbooks and to suggest an improved experiment considering students' capability of experimenting and laboratory safety in high schools. For this study, the experiments for electrolysis of an aqueous CuCl2 solution presented in 11 high school science textbooks were classified by their experimental methods. After high school chemistry teachers performed the experiments as presented in the high school science textbooks, an analysis was performed on problems of the experiments, and an improved experiment was devised. According to the results of this study, in the experiments for electrolysis of an aqueous CuCl2 solution using a U type tube and a U type tube with branch, reaction velocity of the electrolysis was slow, therefore, a side reaction was generated. In the experiment using a beaker, reaction of each electrode could not be observed separately. And in the experiment using an electrolysis instrument, it was difficult to identify property of the reaction product. In the improved experiment using a reaction vessel of ㅂshape, reaction velocity of the electrolysis was fast, reaction of each electrode could be observed separately, and the side reaction decreased. From these results, it was suggested that the improved experiment would help high school students understand scientific conception regarding electrolysis.

Digital textbook service technology trends and utilize. (디지털 교과서 서비스 기술 동향 및 활용)

  • Choi, JoungYoung;Park, Seok-Cheon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.05a
    • /
    • pp.1093-1096
    • /
    • 2013
  • 교육과학기술부는 2006년에 학교교육에 새로운 패러다임의 변화를 받아들이는 방법으로 디지털교과서의 사용을 시도하였다. 2007년 이후 일부 초등학교에서 디지털교과서가 시범적으로 운영 되었으며 2015년 초중고등학교 모든 교과서를 디지털 교과서로 변환을 발표하였다. 따라서 본 논문에서는 이에 대처하기 위해 디지털 교과서의 서비스 구성, 구조, 시스템, 플랫폼등에 대해 분석하고 향후 발전 방향을 연구 한다.

Analysis of Concepts Related to Explanations of Evaporation and Boiling in Secondary School Science Textbooks (중등 과학교과서에서 증발, 끓음의 설명에 제시된 개념간의 관련 정도 분석)

  • Paik, Seong-Hey;Jeong, Ae-Kyung;Ko, Young-Hwan
    • Journal of The Korean Association For Science Education
    • /
    • v.24 no.3
    • /
    • pp.429-441
    • /
    • 2004
  • This study was to examine the concepts using to explain evaporation and boiling in secondary school science textbooks developed in 6th and 7th science curriculum. The types of explanations were compared with maps represented the concepts relationships divided into middle and high schools, 6th and 7th curriculum, and subjects and chapters to find explanation diversity. The difference of explanations related to evaporation and boiling concepts was found in the school levels and subjects. There were few relationships between the main concepts of evaporation phenomena and those of boiling phenomena.

An Analysis of Inquiry Activities in High School Physics Textbooks for the 2009 Revised Science Curriculum (2009 개정 과학교육과정에 따른 고등학교 물리 교과서 탐구활동 분석)

  • Kang, Nam-Hwa;Lee, Eun Mi
    • Journal of The Korean Association For Science Education
    • /
    • v.33 no.1
    • /
    • pp.132-143
    • /
    • 2013
  • The purpose of this study was to examine the nature of inquiry activities proposed in high school physics textbooks that were developed based on the 2009 science curriculum in Korea. The inquiry activities were analyzed using the notion of scientific practices introduced in the Science Education Framework (NRC, 2012). The results showed that the inquiry activities in the textbooks emphasized two of eight types of scientific practices including "Analyzing and interpreting data" and "Constructing explanations". In contrast, the activities required students to "ask questions" only once in a total of 291 science inquiry activities. The other types of scientific practices appeared less than 10%. Also found was that the types of scientific practices were not relevant to the way inquiry activities were used for textbook content. Implications for the curriculum and science teacher education were discussed.

Analysis of Safety Contents in the High School Science Textbooks Based on the 2015 Revised National Science Curriculum (2015 개정 고등학교 과학 교과 교과서에 제시된 안전 관련 내용 분석)

  • Lee, Seyeon;Lee, Bongwoo
    • Journal of The Korean Association For Science Education
    • /
    • v.39 no.4
    • /
    • pp.563-571
    • /
    • 2019
  • The purpose of this study is to analyze the safety contents presented in high school science textbooks of the 2015 revised national science curriculum. For these, we found safety contents in the inquiries and appendices of 63 science textbooks: integrated science, science inquiry experiment, physics I, II, chemistry I, II, biology I, II, and earth science I, II. We analyzed these safety contents using six safety factors based on the seven standards for safety education. The main results are as follows: First, 81(46.0%) inquiries among 176 curriculum inquiries contain safety contents, and these contents are mainly found in chemistry textbooks, and the least in 'science inquiry experiment' textbooks. Second, safety contents are found the most in 'laboratory safety rule', followed by 'safety symbol' and 'usage of protection equipment'. Third, the safety contents of appendices are mainly in 'laboratory safety rule' and 'accident treatment'. Based on these results of this study, it is concluded that these textbooks have problems; that there is a big difference in describing safety contents in each textbook; that these safety contents are not presented in detail and that the educational effect is reduced. Furthermore, the safety symbol is not standardized. We also discussed ways to improve the safety contents of science textbooks.

Analysis of Types of Explanation on Osmosis Concept in Chemistry and Biology Textbooks (화학과 생물 교과서에서 삼투 개념에 관한 설명 유형 분석)

  • Ko, Young-Hwan;Kang, Dae-Hun;Park, Dong-Joe;Kim, Dong-Uk;Paik, Seoung-Hey
    • Journal of The Korean Association For Science Education
    • /
    • v.22 no.4
    • /
    • pp.683-695
    • /
    • 2002
  • In this study, we analyzed types of explanation on osmosis concept that were represented in chemistry and biology textbooks of high school and college. There were 5 types of explanation on osmosis concept. The types of explanation were diffusion of solvent, collision, hydration, equilibrium of concentration and screen of holes. Last two types of explanation were classified into misconceptions. The various types of explanation on osmosis concept might cause to have be a reason that students had many misconceptions and to feel difficult to learn about osmosis concept. Many of textbooks is accord to types of concept explanation and figure explanation on osmosis but some is not.

An Analysis of Concept Description and Model and Student Understanding About Ionic Compound in Textbooks Developed Under the 2009 Revised National Curriculum (2009 개정 교육과정에 따른 교과서에서 이온 화합물의 설명 개념과 모형 및 학생 이해도 분석)

  • Shin, He Young;Woo, Ae Ja
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.5
    • /
    • pp.362-373
    • /
    • 2016
  • In this study, ionic compound in the science textbooks developed under the 2009 revised national curriculum were analyzed in terms of the scientific concept and model description and the student understanding through the questionnaires. Analysis of textbooks was performed for science2 of middle school and chemistry I & II of high school. Questionnaire was carried out with 194 students including middle school 2nd grade and high school 1st-3rd grade. The results are as follows: First, as a result of analysis of textbooks, scientific concepts and models used to explain the ionic compound showed differences depending on the types of textbooks. In addition, scientific models were provided with or without explanation for the scientific concepts. Second, analysis of the questionnaire showed that students didn’t properly understood scientific concepts and models in the ion formation, stoichiometric ratio between ions.