• Title/Summary/Keyword: 고도화

Search Result 2,699, Processing Time 0.028 seconds

A Study on Implementation of SVG for ENC Applications (전자해도 활용을 위한 SVG 변환 연구)

  • Oh, Se-Woong;Park, Jong-Min;Seo, Ki-Yeol;Suh, Sang-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.10
    • /
    • pp.1930-1936
    • /
    • 2007
  • Electronic Navigational Charts(ENCs) are official nautical charts which are equivalent to paper charts with supplementary information. Although their main purpose is to be used for the safe navigation of ships, they also contain much information on coasts and seas which may be interesting to ordinary people. However, there is no easy way to access them because of their specialized data format, access method and visualization. This paper proposes m implementation of SVG for the access and services of ENCs. SVG(Scalable Vector Graphic) makes it possible to make use of Vector graphics for map services in basic internet browsing environment. Implementation of SVG for ENC applications by this research is free of special server side GIS mapping system and client side extra technology. The Implementation of SVG for ENC Applications can be summarized as follows: Firstly, SVG provides spatial information to possess searching engine to embody SVG map. Secondly SVG can provide high-quality vector map graphics and interactive facility without special Internet GIS system. It makes it possible to use services with very low cost. Thirdly, SVG information service targeting on maritime transportation can be used as template, so it can be used dynamically any other purpose such as traffic management and vessel monitoring. Many good characteristics of SVG in mapping at computer screen and reusability of SVG document provide new era of visualization of marine geographic information.

The Classification Accuracy Improvement of Satellite Imagery Using Wavelet Based Texture Fusion Image (웨이브릿 기반 텍스처 융합 영상을 이용한 위성영상 자료의 분류 정확도 향상 연구)

  • Hwang, Hwa-Jeong;Lee, Ki-Won;Kwon, Byung-Doo;Yoo, Hee-Young
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.2
    • /
    • pp.103-111
    • /
    • 2007
  • The spectral information based image analysis, visual interpretation and automatic classification have been widely carried out so far for remote sensing data processing. Yet recently, many researchers have tried to extract the spatial information which cannot be expressed directly in the image itself. Using the texture and wavelet scheme, we made a wavelet-based texture fusion image which includes the advantages of each scheme. Moreover, using these schemes, we carried out image classification for the urban spatial analysis and the geological structure analysis around the caldera area. These two case studies showed that image classification accuracy of texture image and wavelet-based texture fusion image is better than that of using only raw image. In case of the urban area using high resolution image, as both texture and wavelet based texture fusion image are added to the original image, the classification accuracy is the highest. Because detailed spatial information is applied to the urban area where detail pixel variation is very significant. In case of the geological structure analysis using middle and low resolution image, the images added by only texture image showed the highest classification accuracy. It is interpreted to be necessary to simplify the information such as elevation variation, thermal distribution, on the occasion of analyzing the relatively larger geological structure like a caldera. Therefore, in the image analysis using spatial information, each spatial information analysis method should be carefully selected by considering the characteristics of the satellite images and the purpose of study.

Analysis of Shoreline Change Using Multi-temporal Remote Sensed Data on Songjeong Beach, Busan (다중시기 원격탐사 자료를 이용한 부산 송정해수욕장의 해안선 변화 분석)

  • Jang, Dong-Ho;Kim, Jang-Soo;Baek, Seung-Gyun
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.4
    • /
    • pp.59-71
    • /
    • 2012
  • This research was carried out to analyze long-term shoreline change on Busan Songjeong Beach using multi-temporal remote sensed data, GPS survey data and grain size analysis. As a result of multi-temporal satellite imagery analysis, the beach was stable status till early 2000s, but the erosion occurred over whole beach after the construction of shore protection road since 2000. In the result of DEM analysis, the elevation of beach reduced and the slope of berm increased after construction of shore protection road along the coast, this means the erosion environment was dominant on the beach. But the sedimentation was slightly stronger than the erosion in northern region of the beach, then the slope of berm was gentle. In the result of grain size analysis using in-situ samples, the coarsening-trend was found in southeastern region (Line E) of the beach, it is caused by strong wave energy from the outer sea. Consequently, major causes of the beach erosion in the study area were the interception of sand supply from a dune owing to shore protection road construction and scouring phenomenon by strong wave energy in southeastern region of the beach. If the topographic or artificial change will not occur in the future, the erosion in this area will continue. Therefore the prevention measures are required.

A Study on the Relationship of the Deregulation to Non-standard Workers and the Job Satisfaction in Japan (일본의 비정규직에 대한 규제완화와 직업생활 만족도에 관한 연구)

  • Hur, Donghan
    • International Area Studies Review
    • /
    • v.13 no.3
    • /
    • pp.667-692
    • /
    • 2009
  • The deregulation on non-standard workers is inclined to make companies increase the employment of the non-standard workers because of cost-saving effect. As non-standard work rises, so involuntary choice of it does. This trend has resulted in the decline of the non-standard workers' job satisfaction. The internalization of firm-specific skills is strong in Japanese companies. Therefore, even though cost-saving effect is high, the companies cannot assign all the jobs to non-standard workers. Hence, the companies are likely to divide the jobs into standard worker's and non-standard workers' ones. The standard workers' jobs, which focus on high firm-specific skills, has reduced, while the non-standard workers' jobs, which can be outsourced from outside the companies, has increased. As a result, the productivity of standard workers has improved, and their wage levels have increased. Since the deregulation on non-standard workers, their job satisfaction has deteriorated. On the contrary, the job satisfaction of standard workers has increased.

A Deep-Learning Based Automatic Detection of Craters on Lunar Surface for Lunar Construction (달기지 건설을 위한 딥러닝 기반 달표면 크레이터 자동 탐지)

  • Shin, Hyu Soung;Hong, Sung Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.6
    • /
    • pp.859-865
    • /
    • 2018
  • A construction of infrastructures and base station on the moon could be undertaken by linking with the regions where construction materials and energy could be supplied on site. It is necessary to detect craters on the lunar surface and gather their topological information in advance, which forms permanent shaded regions (PSR) in which rich ice deposits might be available. In this study, an effective method for automatic detection of lunar craters on the moon surface is taken into consideration by employing a latest version of deep-learning algorithm. A training of a deep-learning algorithm is performed by involving the still images of 90000 taken from the LRO orbiter on operation by NASA and the label data involving position and size of partly craters shown in each image. the Faster RCNN algorithm, which is a latest version of deep-learning algorithms, is applied for a deep-learning training. The trained deep-learning code was used for automatic detection of craters which had not been trained. As results, it is shown that a lot of erroneous information for crater's positions and sizes labelled by NASA has been automatically revised and many other craters not labelled has been detected. Therefore, it could be possible to automatically produce regional maps of crater density and topological information on the moon which could be changed through time and should be highly valuable in engineering consideration for lunar construction.

Development Strategy of Smart Urban Flood Management System based on High-Resolution Hydrologic Radar (고정밀 수문레이더 기반 스마트 도시홍수 관리시스템 개발방안)

  • YU, Wan-Sik;HWANG, Eui-Ho;CHAE, Hyo-Sok;KIM, Dae-Sun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.4
    • /
    • pp.191-201
    • /
    • 2018
  • Recently, the frequency of heavy rainfall is increasing due to the effects of climate change, and heavy rainfall in urban areas has an unexpected and local characteristic. Floods caused by localized heavy rains in urban areas occur rapidly and frequently, so that life and property damage is also increasing. It is crucial how fast and precise observations can be made on successful flood management in urban areas. Local heavy rainfall is predominant in low-level storms, and the present large-scale radars are vulnerable to low-level rainfall detection and observations. Therefore, it is necessary to introduce a new urban flood forecasting system to minimize urban flood damage by upgrading the urban flood response system and improving observation and forecasting accuracy by quickly observing and predicting the local storm in urban areas. Currently, the WHAP (Water Hazard Information Platform) Project is promoting the goal of securing new concept water disaster response technology by linking high resolution hydrological information with rainfall prediction and urban flood model. In the WHAP Project, local rainfall detection and prediction, urban flood prediction and operation technology are being developed based on high-resolution small radar for observing the local rainfall. This study is expected to provide more accurate and detailed urban flood warning system by enabling high-resolution observation of urban areas.

Verification of Planetary Boundary Layer Height for Local Data Assimilation and Prediction System (LDAPS) Using the Winter Season Intensive Observation Data during ICE-POP 2018 (ICE-POP 2018기간 동계집중관측자료를 활용한 국지수치모델(LDAPS)의 행성경계층고도 검증)

  • In, So-Ra;Nam, Hyoung-Gu;Lee, Jin-Hwa;Park, Chang-Geun;Shim, Jae-Kwan;Kim, Baek-Jo
    • Atmosphere
    • /
    • v.28 no.4
    • /
    • pp.369-382
    • /
    • 2018
  • Planetary boundary layer height (PBLH), produced by the Local Data Assimilation and Prediction System (LDAPS), was verified using RawinSonde (RS) data obtained from observation at Daegwallyeong (DGW) and Sokcho (SCW) during the International Collaborative Experiments for Pyeongchang 2018 Olympic and Paralympic winter games (ICE-POP 2018). The PBLH was calculated using RS data by applying the bulk Richardson number and the parcel method. This calculated PBLH was then compared to the values produced by LDAPS. The PBLH simulations for DGW and SCW were generally underestimation. However, the PBLH was an overestimation from surface to 200 m and 450 m at DGW and SCW, respectively; this result of model's failure to correctly simulate the Surface Boundary Layer (SBL) and the Mixing Layer (ML) as the PBLH. When the accuracy of the PBLH simulation is low, large errors are seen in the mid- and low-level humidity. The highest frequencies of Planetary boundary layer (PBL) types, calculated by the LDAPS at DGW and SCW, were presented as types Ι and II, respectively. Analysis of meteorological factors according to the PBL types indicate that the PBLH of the existing stratocumulus were overestimated when the mid- and low-level humidity errors were large. If the instabilities of the surface and vertical mixing into clouds are considered important factors affecting the estimation of PBLH into model, then mid- and low-level humidity should also be considered important factors influencing PBLH simulation performance.

Combination Effects of Large Dam and Weirs on Downstream Habitat Structure: Case Study in the Tamjin River Basin, Korea (대형 댐과 농업용 보가 하류 서식처 특성에 미치는 영향 연구: 탐진강 유역을 대상으로)

  • Ock, Giyoung;Kang, Ji-Hyun;Park, Hyung-Geun;Kang, Dong-Won
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.4
    • /
    • pp.638-646
    • /
    • 2018
  • The purpose of this study was to investigate the long-term habitat morphological alteration resulting from a large dam and weirs in the Tamjin River. To achieve this, we carried out a hydrograph analysis and a substrate size distribution analysis. We also estimated the channel width, bar area and vegetation encroachment using aerial photographs taken before and after the construction of the dam and weirs. The result of the hydrological analysis showed that flooding downstream was greatly reduced with small peaks occurrence after the dam construction. Interestingly, normal hydrographs in the main channel appeared just after tributary conjunction. There was a similar pattern in the substrate size analysis. Despite coarsened substrate just downstream of the dam site, more sand appeared again after introduction of the tributary. However, there was an increase in the bar area downstream of the dam's channels with most bars covered with vegetation. The channel width increased at the upper area of weirs through impoundment, but decreased downstream because of vegetation encroachment. This study indicate that unregulated tributary plays an important role in restoring hydro-physical habitat conditions in mainstream channels below a large dam. However, numerous weirs could be a causal factor to accelerate habitat deterioration in the dam downstream channels.

Development Stages and Characteristics of Place-Based Industry-Academic Cooperation Projects: The Case of Universities Participating in the LINC+ Project (대학-지역 연계형 산학협력 사업의 발전단계와 특성: LINC+사업 참여대학을 중심으로)

  • Lee, Jong-Ho;Jang, Hoo-Eun
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.96-109
    • /
    • 2019
  • As the role of universities as a civic university contributing to regional development has been emphasized, industry-academic cooperation projects are increasingly focused on quadruple helix interactions of university, government, business and civic society. Drawing upon focus group interviews, we divided place-based industry-academic cooperation projects into four different types and stages of development, according to two indicators of network participation and network strength. Although the proportion of projects that were in the early stages of development was overwhelmingly high, some universities developed a close cooperative system with the local community to enhance the effectiveness of the industry-academic cooperation projects and to implement them in an advanced stage. These findings suggest that the LINC+ project, which has been criticized for its policy effectiveness, will not only contribute to enhancing policy effectiveness through place-based projects but also enhance the role of universities as the main body of regional innovation.

A Study on the Commercialization of a Blockchain-based Cluster Infection Monitoring System (블록체인 기반의 집단감염 모니터링 시스템의 상용화 연구)

  • Seo, Yong-Mo;Hwang, Jeong-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.10
    • /
    • pp.38-47
    • /
    • 2021
  • This study is about a blockchain-based collective quarantine management system and its commercialization model. The configuration of this system includes a biometric information transmission unit that generates biometric information based on measured values generated from wearable devices, a biometric information transmission unit that transmits biometric information generated here from a quarantine management platform, and action information transmitted from the community server. is a system including an action information receiving unit for receiving from the quarantine management platform. In addition, a biometric information receiving unit that collects biometric information from the terminal, an encryption unit that encodes biometric information generated through the biometric information receiving unit based on blockchain encryption technology, and a database of symptoms of infectious diseases to store symptom information and an infection diagnosis database. The generated database includes a location information check unit that receives from the terminal of the user identified as a symptomatic person and determines whether the user has arrived in the community based on the location information confirmation unit and the location of the user after the location is confirmed. It includes a community arrival judgment unit that judges. And, the community server helps the interaction between the generated information. Such a blockchain based collective quarantine management system can help to advance the existing quarantine management system and realize a safer and healthier society.