• Title/Summary/Keyword: 고도산화

Search Result 218, Processing Time 0.025 seconds

Design of Hybrid Rocket (Altitude 15km) Using Liquid Oxidizer ${N_2}O$ (${N_2}O$ 액체산화제를 사용한 고도 15km급 하이브리드 로켓 설계)

  • Heo, Jun-Young;Cho, Min-Gyung;Kim, Jong-Chan;Kim, Soo-Jong;Kim, Jin-Kon;Moon, Hee-Jang;Sung, Hong-Gye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.97-100
    • /
    • 2008
  • A hybrid sounding rocket carrying about 10kg payload reaching up to 15km altitude has been designed. The commercial seamless aluminium tube and liquid ${N_2}O$ without pressurization devices were chosen as rocket motor case and oxidizer supply system respectively. A hybrid rocket engine performing required propulsion impulse is designed with time dependent internal ballistic scheme. Engine performance, aerodynamic characteristics, and trajectory were predicted by a integral technique of internal ballistics and external ballistics. The design results were evaluated by comparison with previous experimental data, technical reports, and literatures.

  • PDF

Synthesis of highly crystalline nanoporous titanium dioxide at room temperature (상온에서 고결정성 나노기공 이산화티탄 제조기술)

  • Chung, Pyung Jin;Kwon, Yong Seok
    • Journal of Energy Engineering
    • /
    • v.25 no.2
    • /
    • pp.65-78
    • /
    • 2016
  • Initial studies of the photocatalyst has been developed from the field relating to the conversion and storage of solar energy. Recently, the study of the various organic decomposition compound and the water purification and waste water treatment by ultraviolet irradiation in the presence of light or a photocatalyst are being actively investigated. In addition, the oxidized material-carbon nanotubes, graphene-nanocomposites have been studied. Such a complex is suitable as a material constituting the solar cells and photolysis nanoelectronics, including the flexible element due to thermal and chemical stability.

Degradation of Microcystin-LR, Taste and Odor, and Natural Organic Matter by UV-LED Based Advanced Oxidation Processes in Synthetic and Natural Water Source (UV-LED기반 고도산화공정을 이용한 수중 마이크로시스틴-LR, 이취미 물질, 자연유기물 분해)

  • Yang, Boram;Park, Jeong-Ann;Nam, Hye-Lim;Jung, Sung-Mok;Choi, Jae-Woo;Park, Hee-Deung;Lee, Sang-Hyup
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.5
    • /
    • pp.246-254
    • /
    • 2017
  • Microcystin-LR (MC-LR) is one of most abundant microcystins, and is derived from blue-green algae bloom. Advanced oxidation processes (AOPs) are effective process when high concentrations of MC-LR are released into a drinking water treatment system from surface water. In particular, UV-based AOPs such as UV, $UV/H_2O_2$, $UV/O_3$ and $UV/TiO_2$ have been studied for the removal of MC-LR. In this study, UV-LED was applied for the degradation of MC-LR because UV lamps have demonstrated some weaknesses, such as frequent replacements; that generate mercury waste and high heat loss. Degradation efficiencies of the MC-LR (initial conc. = $100{\mu}g/L$) were 30% and 95.9% using LED-L (280 nm, $0.024mW/cm^2$) and LED-H (280 nm, $2.18mW/cm^2$), respectively. Aromatic compounds of natural organic matter changed to aliphatic compounds under the LED-H irradiation by LC-OCD analysis. For application to raw water, the Nak-dong River was sampled during summer when blue-green algae were heavy bloom in 2016. The concentration of extracellular and total MC-LR, geosmin and 2-MIB slightly decreased by increasing the LED-L irradiation; however, the removal of MC-LR by UV-LED (${\lambda}=280nm$) was insufficient. Thus, advanced UV-LED technology or the addition of oxidants with UV-LED is required to obtain better degradation efficiency of MC-LR.

Development of the Biological Oxidation Filter System for Water Treatment (수처리용 생물산화 여과장치 개발)

  • 염병호;정충혁;문정석;최승일
    • Environmental engineer
    • /
    • s.181
    • /
    • pp.70-75
    • /
    • 2001
  • 본 연구는 '99년 7월에 벤처형 중소기업 기술개발 지원사업으로 신규 계약된 과제로서 상수원수의 전처리 및 하수 2차 침전수의 재처리 공정에 활용될 생물 산화 여과지를 개발하는 것이다. 생물 산화 여과 system은 상수 원수의 전처리, 상수도의 고도정수 처리, 하수 및 폐수처리에 이용될 수 있는 것으로, 특히 물리적 여과기능과 포기 과정을 통한 산화 기능을 포함하는 생물학적 분해 및 자연정화처리환경을 유지하여 수질이 악화된 상수도의 전·후처리나 하.폐수의 3차 처리에 적용하기 위한 것이다. 생물 산화 여과 시스템은 여과지의 하부 장치에 균등한 공기(산소)공급시설을 하여 여과층에 연속적으로 공기를 공급하면서 여과를 함으로서 생물막 여과 및 산화 기능으로 유기물질, 철, 망간 등을 제거하고 공기의 부상력에 의하여 조류, 부유물질, 냄새 등을 동시에 제거하는 System이다. 현재 상수처리 공정으로서의 생물 산화 여과지 개발을 위해 Bench-scale과 semi-pilot plant를 거쳐 Y시 M취수장애 pilot plant를 설치하여 연구를 진행중에 있으며, 또한, G시 G하수처리장에 하수처리 공정에 관한 연구를 위해 pilot plant를 설치하고 하수 3차 처리와 저농도 하·폐수 처리를 중심으로 연구중에 있다. 아래의 연구 결과는 정수처리 공정 연구를 위한 Bench-scale plant실험을 통해 얻은 결과치이며 현재까지 진행된 연구는 주로 정수처리 공정 중심으로 이루어 졌으나 pilot plant에서는 정수 및 하수처리에서의 생물산화여과공정의 연구가 진행중이다. 현재 연구가 진행중이므로 각 인자별 최적운전조건 등은 계속적인 실험과 연구를 통해 찾아지겠으나 현재까지 수행된 연구자료를 기반으로 볼 때 생물산화 여과장치는 탁도, SS, VSS 등의 제거에 탁월한 효능을 보이고 있다. 수처리용 장치로서의 이러한 기본적인 기능 이외에 NPOC, DOC 제거에도 뛰어난 효능을 보이고 있으며 특히 정수처리 공정에서 문제시 되고 있는 동절기 암모니아성 질소제거 또한 큰 가능성을 보여주고 있다. 그 동안 외국기술에 전면 의존해 오던 생물 산화 여과방식의 국내개발은 비용 절감뿐만 아니라 국내 실정에 맞는 기술개발이라는 점에서 향후 그 적용 범위를 넓혀 갈 수 있을 것이다.

  • PDF

Fatty Acid Composition and Oxidative Properties of Anchovy Oil Extracted by Supercritical Carbon Dioxide (초임계 이산화탄소를 이용하여 추출된 멸치 오일의 지방산 조성 및 산화 특성)

  • Lee, Seung-Mi;Yun, Jun-Ho;Chun, Byung-Soo
    • Clean Technology
    • /
    • v.17 no.3
    • /
    • pp.266-272
    • /
    • 2011
  • Anchovy oil was extracted using supercritical carbon dioxide ($SCO_2$) and organic solvents. Extraction was carried out at temperature range from 40 to $60^{\circ}C$, and pressure range from 15 to 25 MPa. The flow rate of $CO_2$ (22 $gmin^{-1}$) was constant entire the extraction period of 1.5 h. The fatty acid composition of anchovy oil was analyzed by gas chromatography (GC). The main fatty acids of anchovy oil were myristic acid, palmitic acid, stearic acid, palmitoleic acid, EPA (eicosapentaenoic acid), and DHA (docosahexaenoic acid). In addition, the oil obtained by $SCO_2$ extraction contained a higher percentage of polyunsaturated fatty acids especially EPA and DHA comparing to the organic solvent extracted oil. The oxidative stability of oils extracted from Anchovy by $SCO_2$ extraction was compared to those extracted by organic solvents. Results showed that the storage periods of oils obtained by $SCO_2$ extraction were longer than those of organic solvents extraction.

Removal of Phthalate Esters in Advanced Water Treatment Unit Processes (고도정수처리단위공정에서 Phthalate Esters의 제거)

  • Hong, Sung-Hee;Han, Gae-Hee;Lee, Chan-Hyung;Lee, Shun-Hwa
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.5
    • /
    • pp.461-467
    • /
    • 2005
  • Phthalate esters is recently considered as an environmental pollutant. This study investigated removal methods of phthalate esters in water environment. On tap water treatment condition with batch test, removal efficiency of coagulation precipitation of one oxidation were $26.6{\sim}33.8%$ and $10{\sim}15%$, respectively. Phthalate esters was effectively removed by the activated carbon adsorption process on tap water treatment condition. The operation of raw water with EBCT of 10 minutes on continuous process satisfied the standard of drinking water by the WHO and US EPA when the concentration of phthalate esters was $100\;{\mu}g/L$. On pilot plant test, coagulation precipitation process got $32{\sim}44%$ of removal efficiency, sand filtration process $6{\sim}10%$ and ozone oxidation process $8{\sim}10%$, respectively. DEP, DBP, BBP and DEHP were not detected after the raw water was processed with activated carbon. The actual survey of phthalate esters removal by advanced water treatment showed that $29{\sim}76%$, $3{\sim}29%$ and $17{\sim}22%$ of phthalate esters were removed on coagulation precipitation process, sand filtration and ozone oxidation process, respectively. DEP, DBP, BBP and DEHP were not detected after the raw water was processed with activated carbon.

Fabrication of Oxide Thin Films Using Nanoporous Substrates (나노기공성 기판을 사용한 산화물박막의 제조)

  • Park, Yong-Il;Prinz, Fritz B.
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.12 s.271
    • /
    • pp.900-906
    • /
    • 2004
  • Solid oxide fuel cells have a limitation in their low-temperature application due to the low ionic conductivity of electrolyte materials and difficulties in thin film formation on porous gas diffusion layer. These problems can be solved by improvement of ionic conductivity through controlled nanostructure of electrolyte and adopting nanoporous electrodes as substrates which have homogeneous submicron pore size and highly flattened surface. In this study, ultra-thin oxide films having submicron thickness without gas leakage are deposited on nanoporous substrates. By oxidation of metal thin films deposited onto nanoporous anodic alumina substrates with pore size of $20nm{\sim}200nm$ using dc-magnetron sputtering at room temperature, ultra-thin and dense ionic conducting oxide films with submicron thickness are realized. The specific material properties of the thin films including gas permeation, grain/gran boundaries formation, change of crystalline structure/microstructure by phase transition are investigated for optimization of ultra thin film deposition process.

An Electro-Fenton System Using Magnetite Coated One-body Catalyst as an Electrode (일체형 산화철 촉매를 전극으로 하는 전기펜톤산화법)

  • Choe, Yun Jeong;Ju, Jeh Beck;Kim, Sang Hoon
    • Applied Chemistry for Engineering
    • /
    • v.29 no.1
    • /
    • pp.117-121
    • /
    • 2018
  • A stainless steel mesh was applied to the cathode of an electro-Fenton system. Methylene blue (MB) solution was chosen as the model waste water with non-biodegradable pollutants. For the model waste water, the degradation efficiency was compared among various SUS mesh cathodes with different surface treatments and magnetite coatings on them. With increasing amount of the magnetite coating on SUS mesh, the degradation efficiency also increased. The improved electro-catalytic characteristic was explained by the increased amount of in situ generated hydrogen peroxide near the cathode surface. Cyclic voltammetry data also showed improved electro-catalytic performance for SUS mesh with more magnetite coatings on them.

Acid Rain Model Development Considering Altitudinal Precipitation Rate (고도별 강우율 변화를 고려한 산성비 모델의 개발)

  • 구자공;고석오;김민영
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.5 no.1
    • /
    • pp.43-51
    • /
    • 1989
  • 개발된 산성비 모델에서는 다종의 대기오염물 제거로 인한 강우내의 화학성분과 산성도의 고도별 및 시간별 변화를 예측하기 위하여, 강우시 구름내와 밑에서 일어나는 대기 오염물의 강우내로의 물질전달 현상과 화학반응 현상을 동시에 고려하였다. 또한, 강우 산성도의 형성에 중요한 영향을 미치는 구름내에서의 복잡한 동력학적 특성을 고려하기 위하여 강우율의 높이별 변화를 단순화하여 해석하였다. 개발모델을 이용하여 1985년과 1987년 가을의 서울시 산성비에 대하여, 산성비 모델을 이용하여 추정한 pH값과 실측 pH값 사이의 상관관계는 0.57을 나타내었고, 효과적이고 정량적인 관리를 위하여 대기중의 이산화황 농도, 구름층의 두께, 지상에서의 강우율 및 황산이온의 형성에 중요한 역활을 하는 산화제들의 강우 산성도에 미치는 영향을 민감도 분석을 통해서 나타내었다.

  • PDF

The Study of Advanced Treatment of Sewage Wastewater by the Electro Coagulation and Oxidation System (전기응집산화를 이용한 하수처리장의 고도처리방안 연구)

  • Lim, Jin-Hwan
    • Journal of the Korean Society for Environmental Technology
    • /
    • v.19 no.6
    • /
    • pp.556-562
    • /
    • 2018
  • Due to the enforcement of effluent water regulation the advance sewage treatment system is needed to retrofit and remodelling. In this case the most important issue is the effluent concentrations of TP and there are a lot of system to reduce its concentration. But biological treatment processes have many restrictions to enhance the removal efficiency of TP. In this study the efficient ECO operating condition to improve and retrofit biological sewage wastewater treatment system is as follow; 1) The treatment efficiency of BOD, TN and TP at the current density of $15mA/cm^2$ was higher than the treatment efficiency at $5mA/cm^2$ in the electrodes arranged with Al-SUS(Stainless Steel) regardless of the reaction time, The TP concentration was 0.1 mg/L or less. Especially, when the reaction time was maintained at 10 min, the TP concentration was 0.06 mg/L or less irrespective of the current density. 2) The change of TP concentration is not influenced by the change of current density and rather the concentration of treated water changes according to the reaction time. In the case of electro coagulation reaction, a few seconds to several minutes are required. However, the reaction time of electro coagulation and oxidation was studied to be more than 10 minutes. 3) As a result, it has been studied that the economical current density of the electro coagulation oxidation process for TN and TP treatment of domestic wastewater is $15mA/cm^2$ or less and the reaction time is 10 minutes.