• Title/Summary/Keyword: 고농도 질소폐수

Search Result 80, Processing Time 0.027 seconds

Chemical Treatment of Leachate from Swine Manure Composting System (양돈분뇨 퇴비화공정에서 발생하는 침출액의 화학적처리)

  • 정태영;오인환;김동수
    • Journal of Animal Environmental Science
    • /
    • v.8 no.3
    • /
    • pp.145-152
    • /
    • 2002
  • This experiment was conducted to investigate the efficiency and compatibility of the coagulation and settling processes of leachates from the compost of two swine farms. And results obtained are as follows : 1 In the farm A where $COD_{Cr}$, $COD_{Mn}$ and $BOD_5$ of original leachate were 4,400, 2,950 and 87mg/l, respectively, the rate of coagulation and settling process was more efficient in the leachate treated with the conjugate of Alum and cation polymer than that of Alum and anion polymer. The concentrations of BOD$_{5}$, T-N and T-P of the effluent after treatment with the conjugate of Alum and cation polymer under the optimum condition were 19, 257.5 and 0.4mg/l, respectively which are under the governmental regulation level. 2. In the farm B where $COD_{Cr}$, $COD_{Mn}$ and $BOD_5$ of original leachate were 4,720, 3,040 and 95mg/l, respectively, the conjugate of $FeCl_3$, 1,500mg/l and cation polymer 10mg/l ($FeCl_3$+FO4240) was most effective coagulation and settling agent compared with the others. The concentrations of BOD$_{5}$, T-N and T-P of the effluent after treatment with $FeCl_3$+FO4240 were 15.3, 829.4 and 2.8mg/l, respectively. And the concentration of T-N was higher than the governmental regulation level, presumably because of too high concentration of NH$_4$$^{+}$-N in the leachate.

  • PDF

Optimum Condition for $NH_4-N$ Removal in Cowshed Wastewater by Zeolite Column (우사(牛舍) 폐수중(廢水中) 암모니아태(態) 질소(窒素) 제거(除去)를 위한 zeolite column의 적정조건(適正條件))

  • Lee, Dong-Hoon;Choi, Jyung
    • Korean Journal of Environmental Agriculture
    • /
    • v.15 no.2
    • /
    • pp.232-238
    • /
    • 1996
  • This study was conducted to find out the optimum condition for $NH_4-N$ removal from wastewater by a zeolite column. The removal efficiency of $NH_4-N$ by a glass column packed with decreased with the increase in initial concentration, percolation velocity and fraction number. The result of multiple stepwise regressions, $NH_4-N$ removal efficiency by the zeolite column showed a high correlationship with various parameters such as percolation velocity, initial concentration, adsorption amount and fraction number. Theoretical formula by parameter coefficients of multiple stepwise regression was found to be $NH_4-N$ removal $efficiency=0.620{\times}amount$ of zeolite $-0.456{\times}percolation$ velocity $-0.212{\times}initial$ concentration $-3.038{\times}fraction$ number+100.1 In the case of the $NH_4-N$ removal efficiency in cattle farming wastewater, the experimental data were nearly coincident with the theoretical formula.

  • PDF

Effects of Ammonia Loading on Nitrification and Nitrite Build-up in an Activated Carbon Fluidized Bed Biofilm Reactor (암모니아 부하가 활성탄 유동상에서의 질산화 및 아질산 축적에 미치는 영향)

  • Choi, In-Cheol;Park, Soo-Young;Lee, Kwan-Yong;Bae, Jae-Ho;Cho, Kwang-Myeung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.53-60
    • /
    • 2000
  • The effects of ammonia loading on nitrification, especially on nitrite build-up, in an activated carbon fluidized bed reactor were investigated by increasing the ammonia loading rate stepwise from 0.1 to $7.5kg\;NH_3-N/m^3{\cdot}day$. Although effluent nitrite concentration and nitrification efficiency fluctuated at the loading rates above $1.8kg\;NH_3-N/m^3{\cdot}day$, an average nitrification efficiency of 90% was achieved. Nitrite build-up began at an ammonia loading rate of $l.8kg\;NH_3-N/m^3{\cdot}day$, at which the free ammonia concentration was estimated to be above 1 mg/L. During the nitrite build-up, the ratio of influent $NH_3-N$ concentration to the DO concentration of the reactor liquor and the ratio of effluent $NH_3-N$ concentration to the DO concentration of the reactor liquor was measured to be above 100 and 2, respectively. Considering the advantages of nitritation/denitrification, a fluidized bed reactor could be an effective means for biological nitrification of wastewaters with high ammonia concentration.

  • PDF

Advanced Treatment of Swine Wastewater using Hybrid-process (복합형 공정을 이용한 양돈폐수의 고도처리)

  • Kim, Choong-Gon;Kang, Seon-Hong;Shin, Hyun-Gon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.12 no.3
    • /
    • pp.126-133
    • /
    • 2004
  • This study is performed to examine the removal efficiency of organic materials,$NH_4-N$ and P in Swine-Wastewater Treatment using Hybrid-process. It named SBR process, Hybrid-process as RunI(SBR), and Run II(Struvite Tank-SBR), and compared the removal efficiency of each Run. The removal efficiency of the organic materials in each Run is like this; In Run I, TS, VS and COD was 43%, 39%, and 70%, respectively. And in Run II, TS VS, and COD was 52%, 52%, and 82%, respectively. It shows that the removal efficiency of Run II using Strutive Tank is higher. And as for the removal efficiency of $NH_4-N$ and T-P in each Run, Run II using Strutive Tank was 90% and 57%, higher than 56% and 49% of RunI. Especially for $NH_4-N$, Run II showed much higher efficiency, and this proved that Strutive Tank was very efficient process of all for the removal of N and P. As a result of this study, Hybrid-process that combines Strutive Tank and SBR is proved to be a very good process in Swine Wastewater Treatment.

  • PDF

Analysis of laboratory scale nitriation reactor using sludge thickener supernatant (농축조 상징액을 대상으로한 실험실 규모 아질산화 반응조 분석)

  • Im, Jiyeol;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.17 no.4
    • /
    • pp.414-420
    • /
    • 2015
  • Nitrogen is one of main causes to induce eutrophication of water system and one of contaminants that must be treated for protection of water system. In this study, it was intended to identify a method to increase operation efficiency of municipal wastewater treatment plant (MWTP) by treating high concentration nitrogen. A laboratory scale reactor was operated by using sludge thickener supernatant in the MWTP. During operation of the laboratory scale reactor, it was intended to induce stable nitritation and analyze effects of related operation factors. As results, it was shown that the nitiritation could be induced artificially through control of retention time and sections where the stable nitiritation was induced were identified also. In particular, highly efficient nitrite conversion efficiency near 90% was identified in condition of 1 day retention time. Especially, it was shown that ammonium nitrogen load affected ammonium nitrogen removal efficiency and nitrite conversion efficiency. In the condition of high ammonium nitrogen load, the nitrite conversion efficiency and the ammonium nitrogen removal efficiency decreased. On the contrary in the condition of low ammonium nitrogen load, it was found that the nitrite conversion efficiency decreased. It means that control of ammonium nitrogen concentration and its retention time is needed for the nitritation. It is considered that for the sewage containing high load nitrogen in sludge treatment process as like the sludge thickener supernatant, the nitritation can be applied, which can be suggested as a modification method of MWTP.

Production of Nitrous Oxide in Tatara Estuary Receiving Treated Wastewater (하수처리수의 방류를 받는 하천감조부에서의 N2O생성)

  • Lee, Seung-Yoon
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.8
    • /
    • pp.631-641
    • /
    • 2009
  • Transport of nitrous oxide and treated waste water was investigated in an estuary receiving treated waste water. Seasonal change of water quality were also observed to assure origins of $N_2O$ and to estimate the influence of treated waste water on $N_2O$ production in the survey area. Based on nitrous oxide concentration profiles in the survey area, discharged treated waste water were traced, which flowed upstream at the flood tide and downstream at the ebb tide with concentration maxima. It is assumed that nitrous oxide discharged from treated waste water is transported to the survey area with partial and vertical mixture. To determine the production of $N_2O$ in survey area, flux at each sampling sites were calculated and 25% of the produced $N_2O$ was originated from treated waste water in result. The remaining percentage of the production was also assumed to be the discharge from the sediment layers.

Removal of organic Carbon, Nitrogen and Phosphorus in Wastewater based on tapered Aeration with Bacillus sp. (점감포기에 의한 바실러스 특성을 이용한 폐수의 유기물질 및 질소, 인 처리에 관한 연구)

  • Kim, Pan-Soo;Lee, Sang-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.4
    • /
    • pp.861-866
    • /
    • 2007
  • This study was conducted to investigate an aeration tank with RBC process attached Bacillus sp. known as a suitable microorganism for the removing of organic carbon, nitrogen and phosphorus. An aeration tank was based on tapered aeration because Bacillus sp. was well grown in this like environment conditions. The biofilm process with Bacillus sp. as an advanced treatment process could be a best technology for the prominent removal of organic carbon, nitrogen and phosphorus if the mechanism in the process is verified. The operation conditions of DO in the tapered aeration tank were maintained as $1.2{\sim}1.5mg/L$ in aeration tank1, as $0.3{\sim}0.5mg/L$ in aeration tank 2 and less than 0.2 mg/L in aeration tank 3, respectively. Lab-scale experiments were conducted, at room temperature, internal recycle rate was from 200% to 50% and returned sludge rate was from 100% to 50%. As a result, concentration of organic carbons, nitrogen and phosphorus in Period 1 (the time of Bacillus sp. adapted to environment) were decreased gradually. Ultimately, each removal rate in this biological experiment were TCODCr 94%, BOD 87%, T-N 85%, T-P 89% in Period 2. Hence, this process showed an excellent performance of the removal of organic carbon, nitrogen and phosphorus and this is an effective system fur treating of wastewater.

  • PDF

High Strength Slaughter Wastewater Treatment in a Novel Combined System of Hybrid-Rotating Biological Contactor and Biological Aerated Filter (Hybrid-RBC와 BAF의 조합공정을 이용한 고농도 도축폐수의 처리 특성)

  • Jung, Chan-Il;Ahn, Jo-Hwan;Bae, Woo-Keun;Kim, Seung-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.2
    • /
    • pp.77-84
    • /
    • 2011
  • This study was conducted to develop a novel combined system of a hybrid rotating biological contactor (RBC) process that was composed of an attached- and suspended- biomass reactor, followed by a settler and a biological aerated filter (BAF) column to treat a high strength slaughter wastewater. Long term influences of organic and nitrogen loading rates were investigated to see how the combined system worked in terms of the removal efficiency. A synthetic wastewater containing a pork cutlet steak source (commercially available) and swine blood was used to feed the combined system. The hybrid RBC process showed excellent removals: about 95% for soluble COD and 85% for ammonium nitrogen. However, the unsettled solids seriously deteriorated the removal efficiency of total COD (TCOD) and total nitrogen (TN) in the RBC process. A significant fraction of the TCOD and suspended solids (SS) was further removed in the BAF column although the effluent quality was still unsatisfactory, giving TCOD 300 mg/L, SS 180 mg/L and TN 59 mg/L. An addition of polyaluminium chloride into the RBC effluent improved the performance of the settler and BAF, producing an excellent quality of final effluent; TCOD 16.5 mg/L, SS 0 mg/L, TN 55.5 mg/L, TP 1.3 mg/L. Therefore, it was confirmed that the combined system of hybrid RBC and BAF could treat a high strength slaughter wastewater excellently.

A study on characteristic by isolation of nitrogen synthetic microorganism and ammonia nitrogen removal in artificial wastewater (질소 합성 균주의 분리에 의한 특성검토와 합성폐수중의 암모니아성질소 제거)

  • Kim, Su-Il;Lee, Ki-Hyung;Phae, Jae-Gun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.10 no.3
    • /
    • pp.117-125
    • /
    • 2002
  • This study experimented a possibility of advanced treatment through microorganism that converts $NH_3-N$ to organic nitrogen in wastewater contaminated by ammoniac nitrogen unlike conventional nitrogen removal process. After distributing three kinds of special bacteria that use $NH_3-N$ as a substrate, when those bacteria were cultured in no salt condition and salt condition (3% NaCl), M11 showed better growth in salt condition and M12 showed better growth in no salt condition. However M7l grew well in both no salt condition and salt condition. In the test of glucose effect, maximum growth and removal rate were observed in glucose concentration of 5g/L but in high concentration (1000mg/L as $NH_3-N$) of $NH_3-N$ growth and removal rate were low. Removal rate was the highest in 100mg/L $NH_3-N$ and the fact that concentration of $NO_2-N$ and $NO_3-N$ didn't increase assumed $NH_3-N$ was converted to organic nitrogen. Optimum concentration of $K_2HPO_4$ for phosphorous supply and buffer was 5g/L. Special bacteria distributed could use $NO_2-N$ and $NO_3-N$ as well as $NH_3-N$ as substrates. This study showed that when growth rate of bacteria was high removal rate also was high. It is possible to apply as a method to treat wastewater polluted by $NH_3-N$.

  • PDF

Study for Biological Denitrification of High-Strength Nitrate and Nitrite Industrial Wastewater (고농도 질산 및 아질산성 질소 함유 폐수의 생물학적 탈질에 관한 연구)

  • Lee, Byong Hee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.4
    • /
    • pp.446-454
    • /
    • 2005
  • An economic treatment method to remove oxidized nitrogen from wastewater is biological denitrification with organic matters. Several organics can be used, however, methanol is commonly used. When methanol is provided, M:N (Methanol to Nitrogen) ratio is used to define methanol demand for denitrification. In this study, two artificial wastewaters were provided to a biological system to evaluate denitrification performance. Differences of influent total CODcr from effluent soluble CODcr were converted to methanol equivalent and oxidized nitrogen difference between influent and effluent were converted to nitrate equivalent to define M:N ratios. Modes I, II, III, I-1 and IV showed 5.1, 2.7, 3.3, 2.3 and 2.6 of M:N ratios, respectively. Since denitrifying microorganisms had to build a new metabolic system for methanol and influent organics, initial operation mode, Mode I, required more methanol and this resulted in high M:N ratios compared with later operation mode, Mode I-1. Salt in influent did not show inhibitory effects on denitrfication, although this was believed to increase effluent SS and soluble CODcr concentrations in Mode III, I-1 and IV, respectively. The concentrations of effluent soluble $COD_{Mn}$ did not changed much with influent salt.