• Title/Summary/Keyword: 고농도 암모니아성 질소

Search Result 56, Processing Time 0.023 seconds

Estimation of influening factors for efficient anaerobic digestion of high strength ammonia-nitrogen wastewater (고농도 암모니아성 질소 폐수의 효과적인 혐기성 처리를 위한 영향 인자 평가)

  • Park, Seyong;Park, Junghoon;Na, Hoysung;Kim, Moonil
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.5
    • /
    • pp.649-658
    • /
    • 2012
  • In this study, the influencing factors for efficient anaerobic digestion of high strength ammonia-nitrogen wastewater removal were investigated by testing biochemical methane potential test. In the influencing factors, the trace metals which could increase activity of anaerobic microorganisms, microbial concentration and types were evaluated. In the results, trace metals supplementation showed gas production amount higher than those without addition of trace metals. Among the tested trace metals, B, Ni, and Se were preferable to gas production. In the result of gas production according to the microbial concentration, the amount of gas production was proportional to the microbial concentration. In addition, the shortest lag time and the fastest gas production rate were achieved when the highest microbial concentration was tested. granule-type microorganism produced more gas than suspended-type microorganism. In conclusion, the efficient anaerobic digestion for high strength ammonia-nitrogen wastewater removal could be achieved by applying necessary trace metals injection and high concentration granule type microorganism.

Development of a Vertical Multi-stage Ammonia Stripping Reactor for Recovering Ammonia from wastewater with High Nitrogen Concentrations(I) (고농도 질소폐수로부터 암모니아 회수를 위한 다단수직형 암모니아스트리핑조 개발(I))

  • Lee, Jae Myung;Choi, Hong-bok
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.2
    • /
    • pp.41-48
    • /
    • 2017
  • A vertical multi-stage ammonia stripping reactor using E-PFR, which has been proved to be superior in anaerobic and aerobic treatment, was developed and a lab scale experiment was conducted. According to the change of stage number condition, the removal rate of the ammonia nitrogen in the reactor with 0-stage was about 52.5% after 8 hours (pH 10, temperature $35^{\circ}C$, and the air/liquid ratio $3min^{-1}$) However, in the reactor with 5-stage, the removal efficiency was about 62.6%. According to the change of pH condition, the removal rate of ammonia nitrogen was about 42.6% at pH 9 after 8 hours, and was about 74.4% at pH 11 (5-stage reactor, temperature $35^{\circ}C$, and the air/liquid ratio $3min^{-1}$). According to the change of temperature condition, the removal rate of the ammonia nitrogen was about 51% at $25^{\circ}C$ after 8 hours (5-stage reactor, pH 10, and the air/liquid ratio $3min^{-1}$), and was about 87.2% at $45^{\circ}C$. According to the change of air injection volume condition, the removal rate of the ammonia nitrogen was about 45.8% at $2min^{-1}$ after 8 hours (5-stage reactor, pH 10, and at $35^{\circ}C$). and was about 75% at $4min^{-1}$. Based on these results, we will follow up the applicability of the actual plant in the future through continuous operation evaluation.

질산화 토양컬럼에서 NH4-N 농도의 영향

  • Jeong, Gyeong-Hun;Choe, Hyeong-Il;Jeong, O-Jin;Kim, Myeong-Hui;Im, Byeong-Gap;Kim, U-Hang
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2005.05a
    • /
    • pp.377-379
    • /
    • 2005
  • 실험실 규모의 토양컬럼을 사용하여 고농도의 암모니아성 질소의 질산화 영향을 실험한 결과 다음과 같은 결론을 얻었다. 1) 유입수 NH$_{4}$-N의 농도 50 mg/L와 100 mg/L인 경 우 HRT 48시간에서도 NH$_{4}$-N가 99%정도 제거되었으며 유출수 평균 NO$_{3}$-N의 농도는 각각 46.3 mg/L와 98.3 mgh로 유입수 NH$_{4}$-N는 대부분 NO$_{3}$-N로 전환되었다. 2) 유입수 NH$_{4}$-N의 농도 200 mg/L인 경우 HRT 48시간에서 NH$_{4}$-N의 평균제거율이74.8%에 머물렀으나 토양컬럼 내부에 폭기장치를 설치한 결과 NH$_{4}$-N의 평균제거율은 94.7%로 개선되는 효과를 나타냈으며, 유입수 NH$_{4}$-N의 농도 400 mg/L인 경우에는 HRT 72시 간에서도 질산화가 불안정하였으나 마찬가지로 강제 폭기를 실시 한 결과 질산화가 증가하는 경향을 보였다. 4) 실험종료 후 토양컬럼 내부의 암모니아 및 아질산 산화세균을 조사한 결과 각각 1.4${\times}$10$^{5}$과 2.3${\times}$ 10$^{6}$ MPN/g${\cdot}$soil까지 증가하였다.

  • PDF

Characteristic Reactions in Anaerobic Nitrogen Removal from Piggery Waste (돈사폐수의 혐기성 질소제거공정에서 일어나는 특이반응)

  • Hwang, In-Su;Min, Kyung-Sok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.3
    • /
    • pp.300-307
    • /
    • 2006
  • Anaerobic ammonium oxidation(ANAMMOX) is a novel process fur treatment of piggery waste with strong nitrogen. In this study, we investigated acid fermentation of organic matter, denitrificatiot reduction of sulfur compounds and P crystalization by hydroxyapatite during the treatment of wastewater with high strength of ammonium and organic matters by ANAMMOX process. Also, functions of hydroxylamine and hydrazine as intermedeates of ANAMMOX process were tested. This study reveals that various complex-reactions with anaerobic ammonium oxidation of piggery waste are happened and hydroxylamine and hydrazine play an important role in ANAMMOX reaction.

characteristic of foaming in nitritation reactor using anaerobic digester supernatant and livestock wastewater (혐기 소화 상징액과 가축 분뇨를 대상으로 한 아질산화 반응조 내 foaming 특성)

  • Im, Jiyeol;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.16 no.4
    • /
    • pp.433-441
    • /
    • 2014
  • It has been known that sewage containing high-concentration nitrogen affects the efficiency of municipal wastewater treatment plants harmfully. Therefore, research has been actively conducted to treat sewage containing high-concentration nitrogen. The current study has analyzed organic compounds, conducted foaming tests, and operated a laboratory-level nitritation reactor with the subjects of anaerobic digester supernatant and livestock wastewater which are the typical kinds of sewage containing high-concentration nitrogen. According to the results of analyzing organic compounds, soluble inert components form the largest part of anaerobic digester supernatant while particle biodegradable components occupy the most part of livestock wastewater. About the retention time proper for the reaction of nitritation, anaerobic digester supernatant shows 2 days while livestock wastewater indicates 6 days. It seems that the difference in the proper retention time is resulted from the difference of properties in organic compounds and ammonium nitrogen concentration. In addition, livestock wastewater's reactor foam is generated comparatively more than anaerobic digester supernatant's, but it tends to be eliminated faster. It is expected that the findings of this study can be utilized as foundational data afterwards in applying the reaction of nitritation to municipal wastewater treatment plants.

Optimum Condition for $NH_4-N$ Removal in Cowshed Wastewater by Zeolite Column (우사(牛舍) 폐수중(廢水中) 암모니아태(態) 질소(窒素) 제거(除去)를 위한 zeolite column의 적정조건(適正條件))

  • Lee, Dong-Hoon;Choi, Jyung
    • Korean Journal of Environmental Agriculture
    • /
    • v.15 no.2
    • /
    • pp.232-238
    • /
    • 1996
  • This study was conducted to find out the optimum condition for $NH_4-N$ removal from wastewater by a zeolite column. The removal efficiency of $NH_4-N$ by a glass column packed with decreased with the increase in initial concentration, percolation velocity and fraction number. The result of multiple stepwise regressions, $NH_4-N$ removal efficiency by the zeolite column showed a high correlationship with various parameters such as percolation velocity, initial concentration, adsorption amount and fraction number. Theoretical formula by parameter coefficients of multiple stepwise regression was found to be $NH_4-N$ removal $efficiency=0.620{\times}amount$ of zeolite $-0.456{\times}percolation$ velocity $-0.212{\times}initial$ concentration $-3.038{\times}fraction$ number+100.1 In the case of the $NH_4-N$ removal efficiency in cattle farming wastewater, the experimental data were nearly coincident with the theoretical formula.

  • PDF

Treatment of N, P of Auto-Thermal Thermophilic Aerobic Digestion Filtrate with Struvite Crystallization (Struvite 결정화 반응을 이용한 고온 소화 여과액의 N, P 처리 특성)

  • Choo, Yeon-Duk;Kim, Keum-Yong;Ryu, Hong-Duck;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.11
    • /
    • pp.783-789
    • /
    • 2011
  • Recently, auto-thermal thermophilic aerobic digestion (ATAD) has a great attention for destruction of wasted sludge biomass in wastewater treatment plant. Reduction of sludge concentration has been successfully achieved with pilot scale ATAD and ceramic filtration process in field condition. However, high concentration of COD, total nitrogen (TN) and total phosphorus (TP) was observed in filtrate, which should be treated before recirculation of filtrate to biological wastewater treatment plant. This study was focused on removal of nitrogen and phosphorus contained in the filtrate of ATAD, using struvite crystallization method. The effect of operational and environmental parameters (such as, N, P and Mg ion concentration and molar ratio, pH, reaction time, agitation strength, seed dosage, and reaction temperature) on the treatment of TN and TP with struvite crystallization were evaluated. Magnesium (as $MgCl_26H_2O$) and phosphorus (as $K_2HPO_4$) ions were, if necessary, added to increase nitrogen removal efficiency by the crystal formation. Average concentration of $NH_4^+-N$ and $PO_4^{3-}-P$ of the filtrate were 1716.5 mg/L and 325.5 mg/L, respectively. Relationship between removal efficiencies of nitrogen and phosphorus and molar ratios of $Mg^{2+}$ and $PO_4^{3-}-P$ to $NH_4^+-N$ was examined. Crystal formation and nitrogen removal efficiencies were significantly increased as increasing molar ratios of magnesium and phosphorus to nitrogen. As molar ratio of $Mg^{2+}:PO_4^{3-}-P:NH_4^+-N$ were maintained to 2 : 1 : 1 and 2 : 2 : 1, removal efficiencies of nitrogen and phosphorus were 71.6% and 99.9%, and 93.8% and 98.6%, respectively. However, the effect of reaction time, mixing intensity, seed dose and temperature on the struvite crystallization reaction was not significant, comparing to those of molar ratios. Settled sludge volume after struvite crystallization was observed to be reduced with increase of seed dose and to be increased at high temperature.

Nitritation at Various Temperature Conditions - Using Anaerobic Digester Supernatant (다양한 온도 조건에서 아질산화 반응 유도 - 혐기 소화 상징액을 대상으로)

  • Gil, Kyung-Ik;Im, Ji-Yeol
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.237-243
    • /
    • 2011
  • As the effluent quality standard of the municipal wastewater treatment plant (MWTP) has been strengthened, the treatment of the recycle water containing high concentration of ammonium nitrogen has been considered as one of retrofit methods for upgrading the exising MWTPs. In this study, nitritation, economic nitrogen removal process, was induced by laboratory-scale reactor at the $35^{\circ}C$, $20^{\circ}C$, and $10^{\circ}C$ temperature conditions using anaerobic digester supernatant. The stable nitritation was achieved over $20^{\circ}C$, but nitrification was induced at $10^{\circ}C$. It means that the nitritation was affected by SRT and temperature. SRT, demanded for nitritation, is changed according to the temperature. Therefore, it is considered that SRT and temperature are important factors in nitritation. Also, it is approved that inducing the ammonium nitrogen removal and the nitritation are more beneficial over $20^{\circ}C$. The conclusion of this study can be used for the important basic reference when nitritation process is applied for MWTPs.

Salt and NH$_4^+$-N Tolerance of Emergent Plants for Constructed Wetlands (정수식물의 내염성 및 NH$_4$^+$-N 흡수제거능 평가)

  • 이충일;곽영세
    • The Korean Journal of Ecology
    • /
    • v.23 no.1
    • /
    • pp.45-49
    • /
    • 2000
  • Tolerances of aquatic plants (emergent plants) of cattail (Typha orientalis), water oats (Zizania latifolia), reed (Phragmites communis), and bulrush (Scirpus nipponicus) to salts and high NH₄/sup +/-N cone. of industrial wastewater were evaluated. Evapotranspiration of cattail and water oats plants was not affected when the wastewater containing 130 ppm NH₄/sup +/-N with electrical conductivity of 3.0 dS/m was supplied for 5 months. Shoot and root dry wt. of cattail and water oats were rather increased by irrigation of the wastewater while the biomass production of bulrush was greatly reduced. Storage nitrogen concentration in tissues of water oats and reed plants were higher than those in cattail and bulrush. Thus, water oats and reed plants were found to be the better aquatic plants to use in constructed wetlands for treating industrial wastewater of high salt and NH₄/sup +/-N.

  • PDF

The experimental study for high ammonia nitrogen removal using Bardenpho process with Methanol addition (메탄올주입에 의한 Bardenpho공법에서의 고농도 암모니아성 질소 제거에 관한 실험적 연구)

  • Lee, Byonghi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.2
    • /
    • pp.34-40
    • /
    • 1999
  • Aerobic night-soil treatment effluent containing high concentration of ammonia nitrogen was treated to remove nitrogen using Bardenpho process with Methanol addition. The objective of this study was to investigate the feasibility of complete nitrogen removal at three different HRTs such as 6.25d, 5d, and 3.75d, respectively. At each HRT, the nitrogen removal efficiencies are 92%, 99% and 97% and the required amount of methanol are 3.05gMeOH/gN, 2.75gMeOH/gN, and 3.38gMeOH/gN, respectively. Specific nitrification rates are decreased proportional to HRT and are $0.022gNH_4^+-N/g\;MLVSS{\cdot}day$, $0.0332gNH_4^+-N/g\;MLVSS{\cdot}day$ and $0.051gNH_4^+-N/g\;MLVSS{\cdot}day$ and specific denitification rate are decreased proportional to HRT and are $0.0210g\;N/gMLVSS{\cdot}day$, $0.0330g\;N/gMLVSS{\cdot}day$ and $0.0525g\;N/gMLVSS{\cdot}day$, respectively.

  • PDF