• Title/Summary/Keyword: 고객이탈

Search Result 142, Processing Time 0.024 seconds

데이터마이닝을 이용한 이탈확률에 기반한 고객 세분화

  • 홍태호;전성용
    • Proceedings of the Korea Association of Information Systems Conference
    • /
    • 2005.12a
    • /
    • pp.119-129
    • /
    • 2005
  • 현재의 이동통신시장은 시장의 포화상태로 인해 신규 고객의 확보보다는 기존 고객의 유지에 마케팅 활동을 강화하고 있다. 본 연구에서는 이탈고객관리(churn management)를 위한 방안으로 데이터마이닝 기법에 기반하여 고객을 등급별로 세분화하였다. 이동통신 고객데이터를 활용하여 로짓모형, 인공신경망, SVM 등을 이탈고객 예측모형을 개발하였고, 각 모형별 성과를 통계적으로 비교하였다. 이탈고객 예측모형을 통해 고객의 이탈가능성을 등급화하여 등급별 이탈확률과 점유율, 적중률을 산출하였다. 제안된 고객등급화 방법을 통해 이동통신사들은 고객의 이탈확률에 따른 차별화된 마케팅 전락을 수행할 수 있을 것으로 기대된다.

  • PDF

Customer Churn Prediction Using RNN (RNN을 이용한 고객 이탈 예측 및 분석)

  • Lee, Seihee;Lee, Jee-Hyung
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2016.07a
    • /
    • pp.45-48
    • /
    • 2016
  • 오늘날의 고객은 다양한 정보를 통해 넓은 선택의 기회를 가진다. 이러한 상황에서 기업들은 고객과의 지속적인 관계를 유지하기 어려워짐에 따라 고객 유지와 신규 고객 유치를 위한 마케팅 비용을 천문학적으로 지출하고 있다. 기업들이 이탈하는 고객의 속성을 분석하고 이탈 시점을 예측할 수 있다면 마케팅에 사용되는 비용과 노력을 최소화할 수 있을 것으로 예측된다. 이를 위해 본 논문에서는 효과적인 고객 이탈 예측을 위한 딥러닝 기반의 이탈 예측 모델을 제안한다. 이 모델은 모바일 RPG 게임 고객의 시계열적인 행동 패턴을 이용하여 이탈을 예측하는 모델로, 예측을 위한 학습을 할 때 모델링된 고객 데이터를 분석하여 이탈 고객의 특성을 파악할 수 있게 한다. 실험을 통해 이탈 고객과 미 이탈 고객의 모델링된 값이 각각 특정 속성에 치중되어 있는 것을 확인하였고, 제안 모델이 합리적으로 고객의 이탈을 예측하는 것을 보였다.

  • PDF

A Study of Customer Churn by Analysing CRM Customer Data (CRM 고객데이터 분석을 통한 이탈고객 연구)

  • Kim, Sang Yong;Song, Ji Yeon;Lee, Gi Soon
    • Asia Marketing Journal
    • /
    • v.7 no.1
    • /
    • pp.21-42
    • /
    • 2005
  • Customer Relationship Management (CRM) is a corporate marketing strategy maintaining and managing customers. And with CRM companies maximize the customer's value through a series of processes of new customer retention, VIP customer retention, customer value increase, potential customer activation, and customers for lifetime by collecting the customer information and taking advantage of it effectively. In particular, as the competitive environment is changing rapidly and getting more intense, maintaining the customer retention through customer churn management becomes more important in order to increase the customer value for maximizing the company's profit and to build up the relationship with customers. For example, the financial industry has managed the customer churn with the concept of customer segmentation. Recently the customer retention and churn management is becoming increasingly important in all business fields as well as financial industry since the companies expect the effect of preventing the customer churn by identifying characteristics of customers. However, despite the increasing interest and importance of the management of the customer churn, not many of studies are systematically executed by analyzing the data of customer churn. In this study we analyze the actual data of CRM activities for the customer retention, specifically the data of TV home-shopping. By doing so, we hope to identify the differences of demographic attributes and transaction specific characteristics in consumer behaviors between the churning customer and the retained customers. In addition, we try to find out the variables which can impact the churning of the customers and to predict the churn rate of individual customer through our proposed model of customer churn. In the end, based on our findings we suggest the possible marketing strategies for TV home-shopping companies.

  • PDF

실시간 CRM을 위한 분류 기법과 연관성 규칙의 통합적 활용;신용카드 고객 이탈 예측에 활용

  • Lee, Ji-Yeong;Kim, Jong-U
    • 한국경영정보학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.135-140
    • /
    • 2007
  • 이탈 고객 예측은 데이터 마이닝에서 다루는 주요한 문제 중에 하나이다. 이탈 고객 예측은 일종의 분류(classification) 문제로 의사결정나무추론, 로지스틱 회귀분석, 인공신경망 등의 기법이 많이 활용되어왔다. 일반적으로 이탈 고객 예측을 위한 모델은 고객의 인구통계학적 정보와 계약이나 거래 정보를 입력변수로 하여 이탈 여부를 목표변수로 보는 형태로 분류 모델을 생성하게 된다. 본 연구에서는 고객과의 지속적인 접촉으로 발생되는 추가적인 사건 정보를 활용하여 연관성 규칙을 생성하고 이 결과를 기존의 방식으로 생성된 분류 모델과 결합하는 이탈 고객 예측 방법을 제시한다. 제시한 방법의 유용성을 확인하기 위해서 특정 국내 신용카드사의 실제 데이터를 활용하여 실험을 수행하였다. 실험 결과 제시된 방법이 기존의 전통적인 분류 모델에 비해서 향상된 성능을 보이는 것을 확인할 수 있었다. 제시된 예측 방법의 장점은 기존의 이탈 예측을 위한 입력 변수들 이외에 고객과 회사간의 접촉을 통해서 생성된 동적 정보들을 통합적으로 활용하여 예측 정확도를 높이고 실시간으로 이탈 확률을 갱신할 수 있다는 점이다.

  • PDF

SOM을 이용한 고객의 이탈 가능성 분석 및 이탈 방지 방법론

  • Chae, Gyeong-Hui;Kim, Jae-Gyeong;Song, Hui-Seok
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.05a
    • /
    • pp.694-697
    • /
    • 2004
  • 최근 빠르게 성숙되고 있는 시장과 경쟁적 환경으로 인해 고객 유지에 대한 중요성이 증대되고 있다. 이는 기존 고객을 유지하는 것이 비용 면에서 저렴할 뿐 아니라, 고객 충성도나 구전효과가 같은 기타 부수적인 이득을 획득할 수 있다는 측면에서 유리하기 때문이다. 본 논문은 고객의 이탈 가능성을 미리 예측하고 이를 사전에 방지할 수 있는 고객 유지 절차를 제시하고 있다. 이탈고객의 탐지 및 방지를 위해서는 기존의 인구통계학적 자료 외에도 웹로그, 구매 Database 등의 대용량의 고객 행위 데이터에 대한 분석이 요구되기 때문에 데이터 마이닝 기법의 활용이 필수적이다. 그러나 대부분의 데이터 마이닝 연구는 예측 및 분류의 정확성이 높은 모델을 개발하는데 초점이 맞추어져 있으며, 고객의 행위를 이해하고 바람직한 방향으로 유도하고자 하는 연구는 지극히 부족한 상황이다. 그러므로 본 논문은 다양한 데이터마이닝 기법을 통합하여 잠재 이탈고객을 탐지하고, 기존 연구에서 간과하고 있던 비용적 측면을 고려한 이탈 방지 절차를 제시하고자 한다.

  • PDF

Analysis to Customer Churn Provoker's Roles Using Call Network of a Telecom Company (소셜 네트워크 분석을 기반으로 한 이동통신 잠재고객 이탈에 대한 연구)

  • Chun, Heuiju;Leem, Byunghak
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.1
    • /
    • pp.23-36
    • /
    • 2013
  • In this study, we investigate how churn customers (who play a central connector or broker role) affect other customers' churn in their call networks with ego-network analysis using call data of a mobile telecom company in Korea. As a result of investigating Reciprocal Network, we found a relationship of attrition among churn customers. Churn provokers who influence other customers' attrition exist in customer churn networks. The characteristics of churn provokers is that they play a central connector and broker role in their groups. The proportion of churn provokers increases and the churn provoker's influence increases because the network is a reciprocal one.

Customer Churning Analysis by Using Data Mining in Credit Card Market (신용카드 시장에서 데이터마이닝을 이용한 이탈고객 분석)

  • 이건창;정남호;신경식
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.06a
    • /
    • pp.421-444
    • /
    • 2001
  • 최근 데이터 마이닝 기법이 주목받고 있는 이유 중의 가장 큰 이유는 자사가 보유하고 있는 고객의 특성을 파악함으로써 기존의 고객을 효과적으로 유지·관리할 수 있도록 지원하기 때문이다. 특히 고객 보유율 5% 신장이 수익률 120% 증대를 가져오는 것으로 보고되고 있는 신용카드 업계에서는 신규고객을 확보하는 것 만큼 기존 고객을 유지·관리하는 것이 중요하다. 특히, 신용카드를 발급 받고 거의 사용하지 않은 고객이나 쉽게 이탈하는 고객을 판별하는 것은 신용카드사의 입장에서는 비용절감 차원에서 매우 중요하다. 그러나 아직까지 어떠한 속성을 보유하고 있는 고객이 쉽게 이탈하는지를 판별할 수 있는 연구는 거의 진행되지 않았다. 이에 본 인구에서는 데이터마이닝 기법 중 널리 알려진 인공신경망, 로지스틱 회귀분석, C5.0 방법을 이용하여 신용카드 시장에서의 고객현황에 대하여 분석하고자 한다. 이를 위하여 본 연구에서는 모 신용카드사의 최근 4년간 (97넌 3월 이후) 가입고객 및 이탈고객을 대상으로 실증분석을 실시하였다. 분석결과 신용카드 시장에서 카드를 지속적으로 보유하고 있는 고객과 이탈하는 고객을 구분하는 속성이 존재함을 발견하였고, 이를 바탕으로 신용카드사가 수립해야 할 마케팅 전략을 제시하였다.

  • PDF

Moderating Role of Customer-Firm Relationship Characteristics In Service Failures and Customer Defection Link (서비스실패와 고객이탈간 연결에서 고객-기업 관계특성의 조정적 역할 - 가구단위의 연속적 서비스를 중심으로 -)

  • Joo, Young-Hyuck;Ok, Sung-Park
    • Journal of Global Scholars of Marketing Science
    • /
    • v.16 no.2
    • /
    • pp.27-54
    • /
    • 2006
  • As maintaining customer long term relationship is critical factor for improving to firm value as well as customer lifetime value, the academicians and practitioners have paid attention to customer defection. It is said that service failures are key factors to customer defection or customer switching(Keaveney 1995 etc.). This study examines that the effect on customer defection of service failures is differential according to the various customer-firms relationship characteristics. We consider relationship duration, usage level, decision making influence, industry knowledge and switching cost as customer-firm relationship characteristics based on marketing literature. Predictions are developed and tested using Internet service provider(ISP) user survey data(n=212). Results show that the customer-firms relationship characteristics/above variables) play a moderating roles in the service failures and customer defection links.

  • PDF

The Analysis Telecommunication Service MarKet with Data Mining (통신시장에서 마이터 마이닝 분석)

  • 장일동;위승민
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10a
    • /
    • pp.1-3
    • /
    • 2001
  • 이 논문에서는 지식발견과 데이터 마이닝에 관한 전반적인 소개와 고객이탈에 관한 것이다. 데이터 마이닝이란 과거에 수집된 데이터로부터 반복적인 학습과정을 거쳐 데이터에 내재되어 있는 패턴을 찾아내는 모델링 기법이며 통신서비스시장에서 데이터 마이닝 활용으로 고객이탈방지 모델을 인공신경망을 통해 구축하였다. 통신서비스시장의 경쟁이 심화됨에 따라 통신서비스 제공 업체가 고통으로 겪는 어려움 중의 하나가 고객이탈률이다. 따라서 데이터베이스에서 보다 가치 있는 정보를 찾아내 고객 이탈고객 분류의 적중률에 관하여 논의하였다.

  • PDF

Churn Prediction Model using Logistic Regression (Logistic Regression을 이용한 이탈고객예측모형)

  • Jeong, Han-Na;Park, Hye-Jin;Kim, Nam-Hyeong;Jeon, Chi-Hyeok;Lee, Jae-Uk
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2008.10a
    • /
    • pp.324-328
    • /
    • 2008
  • 금융산업에서 고객의 이탈비율은 기대수익에 영향을 미친다는 점에서 예측이 필요한 부분이며 최근 들어 정확한 예측을 통한 비용관리가 이루어지면서 고객 이탈을 예측하는 것이 중요한 문제로 떠오르고 있다. 그러나 보험 고객 데이터가 대용량이고 불균형한 출력 값을 갖는 특성으로 인해 기존의 방법으로 예측 모델을 만드는 것이 적합하지 않다. 본 연구에서는 대용량 데이터를 처리하는 데 효과적으로 알려져 있는 Trust-region Newton method를 적용한 로지스틱 회귀분석을 통해 이탈고객을 예측하는 것을 주된 연구로 하며, 불균형한 데이터에서의 예측정확도를 높이기 위해 Oversampling, Clustering, Boosting 등을 이용하여 고객 데이터에 적합한 이탈 고객 예측 모형을 제시하고자 한다.

  • PDF