고객만족 활성화를 위한 노력의 하나로 NPS 기반의 심층 VOC를 수집하여 프로세스 기반의 프레임워크 전략을 제안한다. 기존의 고객 Segmentation 방식은 조사 대상 전체의 응답자 특성을 기반으로 한 방식이다. 이 번의 제안한 전략 프레임워크는 순고객추천지수(NPS : Net Promoter Score) 실사를 통한 고개의 심층 VOC(Voice of Customer)를 기반으로 분석한 방식이다. 본 논문에서는 KISTI의 과학기술정보 서비스에 대한 고객만족도를 기반으로 하여 충성고객을 예측할 수 있는 프레임워크를 구축하는 것이다. 이를 위해 서비스를 경험한 2,500여 명의 의사결정자를 대상으로 과학기술정보 서비스에 대한 고객충성도를 분석하였다. 이와 같은 연구결과는 인터넷 등 정보의 발달로 고객의 긍정적 또는 부정적인 구전이 급속도로 노출되는 환경에서 고객의 만족도를 관리함으로써 충성고객을 확보하는데 사전 예측자료로 활용될 수 있다.
본 논문에서는 국내에서는 처음으로 이용 고객의 변화를 3년간 추적하여 이용행태를 인지하고 대비하기 위해 적용한 방법으로서, 순고객추천지수(NPS : Net Promoter Score) 실사를 통한 고개의 심층 VOC(Voice of Customer)를 기반으로 분석한 방식이다. KISTI의 해외과학기술자네트워크(KOSEN : The Global Network of Korean Scientists & Engineers)의 서비스에 대한 고객만족도를 기반으로 하여 충성고객을 예측할 수 있는 프레임워크를 구축하는 것이다. 이를 위해 서비스를 경험한 500여명의 의사결정자를 대상으로 해외과학기술자네트워크 서비스에 대한 고객충성도를 분석하였다. 이와 같은 연구결과는 인터넷 등 정보의 발달로 고객의 긍정적 또는 부정적인 구전이 급속도로 노출되는 환경에서 고객의 만족도를 관리함으로써 충성고객을 확보하는데 사전 예측자료로 활용될 수 있다.
병원의 의료 서비스에 대한 고객의 불만과 고충 내용을 분석하여 불만족을 파악함으로써 고객 불만족의 재발을 막고 이에 대한 해결방안을 제시하고 적용하는 고객만족 경영 전략을 수립하고자 분석한 결과 다음과 같다. 1. 조사대상자의 성별은 남자가 높은 분포를 보였고 계절별로는 환자측면과 보호자측면 모두 여름에 높았고 요일별로는 모든 측면에서 월요일에 불만족이 많았다. 이용형태별로는 환자측면은 외래가, 보호자측면은 입원이 높았고 발생부서별로는 환자측면과 보호자측면 모두 진료부에 대한 불만사항이 많았고 소리함을 통한 접수가 많았다. 2. 불만요일별 항목 특성 중 진료서비스 항목은 진료정 확성이 높은 분포를 보였고 보호자는 진료서비스에서, 환자는 절차서비스에서 높은 불만을 보였다. 3. 발생부서별로는 절차서비스는 진료지원에서 높은 점수가, 진료서비스는 진료부에서 높은 점수를 보였으며 친절서비스에서는 간호부가 높은 점수를 보였고 편의환경서비스에서는 행정부가 높은 점수를 보였으며 통계적으로 유의한 차이를 보였다.4. 불만요인별 상관관계의 결과는 진료서비스는 성별의 역 상관관계를 보였다. 친절서비스는 성별과 연령이 정상관 관계를 보였고, 진료서비스는 역상관 관계를 보였다. 절차서비스는 성별과 연령, 진료서비스, 친절서비스가 역상관 관계를 보였다. 편의환경서비스는 성별과 연령이 정상관 관계를 보였고, 진료서비스, 친절서비스, 절차서비스는 역상관 관계를 보였다. 현 의료서비스에 대한 고객의 불만 및 고충 내용이 병원 의료서비스의 질을 개선하는데 이바지할 수 있는 기초자료로써 그 의의가 있다.
본 연구의 목적은 충성고객에서부터 불만고객에 이르기까지 다양한 고객의 소리(VOC)를 통하여 유통업체들이 서비스마케팅을 극대화시킬 수 있는 방안을 도출하고 적절한 VOC시스템의 구축방안을 제시하고자 한다. 연구의 범위는 유통업체로 국한하였으며, 여러 VOC 채널 중에서 인터넷 게시판을 대상으로 하였다. 실증적인 연구를 위해 유통업체 5개사(社)의 홈페이지 상에 민원을 제기하고 나서 처리되는 과정을 사례로써 조사하였다. 그리고 고객만족도 조사는 유통업체 A사(社)의 ○○점을 대상으로 설문조사를 실시하였다. 본 연구를 통해 나타난 결과는 다음과 같다. 첫째, 소비자의 감성을 자극하는 신속하고 성실한 답변은 기업의 이미지를 긍정적으로 전환시켰다. 둘째, 연령대와 성별로 VOC채널에 대한 선호도를 달리하였다. 30대 이하와 40대 이상 각기 다른 채널을 도구로 감성을 자극해야 하며 남자에 비해 여자는 대다수 전화로 하는 즉각적이면서도 자신의 스토리를 들어주길 원하는 스타일이었다. 셋째, 소비자 트렌드 변화에 따라 쌍방향커뮤니케이션이 가능한 VOC시스템을 위해 감성 네트워크 시스템을 구축해야 한다. 따라서 본 연구에서는 현장에서 접목할 수 있는 VOC개선방안을 제시함으로써 실질적인 현장위주, 고객위주의 실천과제를 도출해 보았다.
본 연구에서는 초고속인터넷 상품에 관련된 고객 불만사항(VOC, Voice of Customer)의 빅데이터를 활용하여 고객이 지각하는 품질이상의 원인과 선제적 서비스의 가능성을 살펴보았다. 선제적 서비스의 가능성을 검증하기 위해 실제 이동통신 서비스기업의 시설·장비의 총 13개 장애경보에 관련된 품질이상 VOC를 수집한 후, 𝒙2검증을 통해 품질이상 VOC 실제관측값과 기대값이 통계적으로 유의한 차이가 있는 지 검증하였다. 연구결과, 시설·장비의 총 13개 장애경보 관련 품질이상 VOC 중 6개의 장애경보로서, 'FTTH-R 장비 ON/OFF', 'FTTH-E,V 회선오류 감지', '포트불량, FTTH-R 회선오류 감지', '네트워크 LOOP 감지', 그리고 '비정상 트래픽 제한'은 실시간 모니터링을 통한 선제적 서비스가 가능하다는 통계적 근거를 찾았다. 기업들은 이러한 선제적 서비스를 이용하여 시잠점유율을 향상키시고 고객서비스 비용을 절감하는 데 적용할 수 있을 것이다. 본 연구의 결과는 통신서비스 분야의 선제적 서비스의 가능성을 진단하고, 나아가 효과적인 선제적 서비스 제공 방안에 대한 시사점을 제시하였다는 점에서 실제 산업 적용에 대한 공헌점이 기대된다.
최근 딥러닝 기술이 주목을 받고 있다. 대중들의 관심을 받았던 국제 이미지 인식 기술 대회(ILSVR)와 알파고(AlphaGo)에서 사용된 딥러닝 기술이 바로 합성곱 신경망(CNN; Convolution Neural Network)이다. 합성곱 신경망은 입력 이미지를 작은 구역으로 나누어 부분적인 특징을 인식하고 이것을 결합하여 전체를 인식하는 특징을 가진다. 이러한 딥러닝 기술이 우리의 생활에 있어 많은 변화를 야기할 것이라는 기대를 주고 있지만 현재까지는 이미지 인식과 자연어 처리 등에 그 성과가 국한되어 있다. 비즈니스 문제에 대한 딥러닝 활용은 아직까지 초기 연구 단계로 향후 마케팅 응답 예측이나 허위 거래 식별, 부도 예측과 같은 전통적 비즈니스 문제들에 대해 보다 깊게 활용되고 그 성능이 입증된다면 딥러닝 기술의 활용 가치가 보다 더 주목받게 될 것으로 기대된다. 이러한 때 비교적 고객 식별이 용이하고 활용 가치가 높은 빅데이터를 보유하고 있는 전자상거래 기업의 사례를 바탕으로 하여 딥러닝 기술의 비즈니스 문제 해결 가능성을 진단해보는 것은 학술적으로 매우 의미 있는 시도라 할 수 있겠다. 이에 본 연구에서는 전자상거래 기업의 고객 행태 예측력을 높이기 위한 방안으로 합성곱 신경망을 활용한 '이종 정보 결합(Heterogeneous Information Integration)의 CNN 모델'을 제시한다. 이는 정형과 비정형 정보를 결합하여 다층 퍼셉트론 구조의 합성곱 신경망에서 학습시키는 모델로서 최적의 성능을 발휘하도록 '이종 정보 결합'과 '비정형 정보의 벡터 전환', 그리고 '다층 퍼셉트론 설계'로 하는 3개의 내부 아키텍처를 정의하고 각 아키텍처 단위로 구성되는 방식에 따른 성능을 평가하여 그 결과를 바탕으로 제안 모델을 확정하고 그 성능을 평가해보고자 한다. 고객 행태 예측을 위한 목표 변수는 전자상거래 기업에서 중요하게 관리하고 있는 재구매 고객, 이탈 고객, 고빈도 구매 고객, 고빈도 반품 고객, 고단가 구매 고객, 고할인 구매 고객 등 모두 6개의 이진 분류 문제로 정의한다. 제안한 모델의 유용성을 검증하기 위해서 국내 특정 전자상거래 기업의 실제 데이터를 활용하여 실험을 수행하였다. 실험 결과 정형과 비정형 정보를 결합하여 CNN을 활용한 제안 모델이 NBC(Naïve Bayes classification)과 SVM(Support vector machine), 그리고 ANN(Artificial neural network)에 비해서 예측 정확도와 F1 Measure가 높게 평가되었다. 또 NBC, SVM, ANN에서 정형 정보만을 사용할 때 보다 정형과 비정형 정보를 결합하여 입력 변수로 함께 활용한 경우에 예측 정확도가 향상되는 것으로 나타났다. 따라서 실험 결과로부터 비정형 정보의 활용이 고객 행태 예측의 정확도 향상에 기여한다는 점과 CNN 기법의 특징 추출 알고리즘이 VOC에 사용된 단어들의 분포와 위치 정보를 해석하여 문장의 의미를 파악하는데 효과적이라는 점을 실증적으로 확인하였다는데 그 의미가 있다고 할 수 있겠다. 이를 통해서 CNN 기법이 지금까지 소개된 이미지 인식이나 자연어 처리 분야 외에 비즈니스 문제 해결에도 활용 가치가 높다는 점을 확인하였다는데 이 연구의 의의가 있다 하겠다.
이 연구의 목적은 소셜 미디어에서 추출된 7개의 감성 도메인이 기업의 성과에 대한 영향 분석실험을 위한 데이터로서 적합한 지에 대해 신뢰성을 확인하고, 실제 고객감성이 자동차 시장점유율에 어떠한 영향을 미치는 지에 대하여 확인하기 위한 것이다. 본 연구는 총 3단계 구성으로서, 단계 1은 감성사전 구축 단계로서 미국 내 26개의 자동차 제조 회사의 고객의 소리 (VOC: Voice of Customer) 총 45,447개를 자동차 커뮤니티로부터 crawling하여 POS 정보 추출 후 감성사전을 구축하였고, 7개의 감성도메인을 만들었다. 단계 2는 신뢰성분석의 단계로서 자기상관관계분석과 주성분 분석 (PCA)을 통해 데이터의 실험 적합성을 검증하였다. 단계 3에서는 PCA를 근거로 2개의 선형회귀분석 모델을 구축하였고 GM, FCA, VOLKSWAGEN 등 3개의 기업을 선정, 2013년부터 2015년까지 7개 감성영역의 자동차 시장점유율에 대한 영향을 실험하였다. 실험 결과, 자기상관관계분석에 의해서 감성 데이터에 자기상관성과 시계열적 패턴이 관찰되었다. PCA 결과, 감성영역이 부정성, 긍정성, 중립성을 주성분으로 연결되어 있음이 확인되었다. VOC 감성 데이터에 대한 신뢰성을 바탕으로 한 2개 Model의 선형회귀분석 결과, 기업마다 시장점유율에 유의미한 영향을 미치는 감성들이 존재하며 Model 1과, 2의 감성영향력이 차이가 있고 중립성의 영향을 발견하였다. 본 연구를 통해, 데이터 상에 나타난 정보를 가진 감성이 과거 값에 기초하여 자동차 시장에서 변화를 수반할 수 있다는 것을 나타내고 있음을 확인하였다. 또한, 우리가 시장 데이터의 가용성을 적용하려고 할 때, 자동차 시장 관련 정보나 감성의 자기상관성을 잘 활용할 수 있다면, 감정 분석에 대한 연구에 큰 기여를 할 수 있을 뿐만 아니라, 실제 시장에서의 비지니스 성과에도 다양한 방법으로 기여할 수 있을 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.