• Title/Summary/Keyword: 고강도 자기충전형 콘크리트

Search Result 3, Processing Time 0.021 seconds

Box-Wilson Experimental Design-based Optimal Design Method of High Strength Self Compacting Concrete (Box-willson 실험계획법 기반 고강도 자기충전형 콘크리트의 최적설계방법)

  • Do, Jeong-Yun;Kim, Doo-Kie
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.5
    • /
    • pp.92-103
    • /
    • 2015
  • Box-Wilson experimental design method, known as central composite design, is the design of any information-gathering exercises where variation is present. This method was devised to gather as much data as possible in spite of the low design cost. This method was employed to model the effect of mixing factors on several performances of 60 MPa high strength self compacting concrete and to numerically calculate the optimal mix proportion. The nonlinear relations between factors and responses of HSSCC were approximated in the form of second order polynomial equation. In order to characterize five performances like compressive strength, passing ability, segregation resistance, manufacturing cost and density depending on five factors like water-binder ratio, cement content, fine aggregate percentage, fly ash content and superplasticizer content, the experiments were made at the total 52 experimental points composed of 32 factorial points, 10 axial points and 10 center points. The study results showed that Box-Wilson experimental design was really effective in designing the experiments and analyzing the relation between factor and response.

The Evaluation of Mechanical Properties of Ultra High Performance Concrete with Using Steel Fiber of Wave Type (물결형 강섬유를 이용한 초고성능 콘크리트의 역학적 특성 평가)

  • Ryu, Gum-Sung;Koh, Kyung-Taek;Kang, Su-Tae;Park, Jung-Jun;Kim, Sung-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.353-356
    • /
    • 2008
  • UHPC which was a structural material exhibiting very remarkable mechanical performances with compressive strength, tensile strength and flexural strength rising up to 200MPa, 15MPa and 35MPa, respectively. In addition, this material presents exceptional durability regard to the very low diffusion and penetration speeds of noxious substances like chloride ions This study was carry out to evaluate the effect of flexural behavior according to steel fiber type in UHPC. The results is showing that the steel fiber type have remarkable influence flexural strength Addition to it is showing that steel fiber type made little difference in the first cracking strength but considerable gap in the ultimate flexural strength to use the steel fiber of wave type.

  • PDF

The Rheology of Cement Paste Using Polycarboxylate-Based Superplasticizer for Normal Strength-High Fluidity Concrete (보통강도 고유동 콘크리트용 PC계 고성능 감수제를 사용한 시멘트 페이스트의 레올로지 특성 평가)

  • Kong, Tae-Woong;Lee, Han-Seung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.276-286
    • /
    • 2021
  • General high fluidity concrete is the area of high strength concrete with a high amount of cement to secure the required fluidity and workability. Since most of the concrete structures currently used have normal strength, there is a limit to the practical expansion and practicality of use. Thus it is necessary to develop normal strength-high fluidity concrete with low binders that can be used not only in general buildings but also in special buildings, and can greatly reduce construction time and save labor costs. This requires to develop and apply the polycarboxylate-based superplasticizer. In this study, PCE was prepared for each combination of starting materials(WR, HB, RT) and the rheological properties of cement paste were analyzed using ringflow cone and a rotary viscometer. As a result, when PCE with a combination of WR 80%, HB 6.5%, and RT 13.5% was applied, the yield stress can be minimized while securing the plastic viscosity at level of the normal strength. In addition, high fluidity due to the high dispersion effect was confirmed.