• Title/Summary/Keyword: 고강도 낙석 방지울타리

Search Result 2, Processing Time 0.014 seconds

Evaluation of Structural Performance for High Strength Rockfall Protection Fence according Reinforcement of H-Beam using Numerical Analysis (수치해석을 통한 지주 보강에 따른 고강도 낙석 방지울타리 구조성능 평가)

  • Hyunwoo Jin;Sanghoon Seo;Duho Lee;Youngcheol Hwang
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.1
    • /
    • pp.25-36
    • /
    • 2023
  • In Korea, the rockfall prevention fence is designed with 50kJ of rockfall kinetic energy in order to prevent damages such as falling rocks and landslides. In the case of rockfall kinetic energy, it is highly dependent on the shape of the slope on which it occurs. As a previous study, a fence performance evaluation was conducted for 100kJ rockfall impact energy using ETAG 27. However, previous studies have focused on newly installed rockfall prevention fences. In this study, a reinforcing materials was installed on the existing rockfall prevention fence through numerical analysis, and the structural performance of the high-strength rockfall prevention fence capable of defending against 120kJ of rockfall kinetic energy was evaluated.

Analysis of Magnitude and Behavior of Rockfall for Volcanic Rocks in Ulleung-Do (울릉도 화산암류의 낙석 규모 및 거동 분석)

  • Moon, Gi-Bong;You, Young-Min;Yun, Hyun-Seok;Suh, Young-Ho;Seo, Yong-Seok;Baek, Yong
    • The Journal of Engineering Geology
    • /
    • v.24 no.3
    • /
    • pp.373-381
    • /
    • 2014
  • It is difficult to predict the magnitude of a rockfall with respect to the shape, volume, and weight of the rock mass, as a rockfall exhibits erratic behavior that depends on the slope geometry, such as the height and dip of the slope. In this study, a field survey was conducted on the slopes of Ulleung-Do, South Korea, where rockfalls frequently occur along coastal roads, to classify the mode of rockfalls and estimate their magnitude. This study also analyzed the effects of rockfall behavior on roads by applying a simulation technique. Agglomerate and trachytic rocks distributed across the study area produce rockfalls in a differential weathering rockfall mode and a toppling rockfall mode. In terms of rockfall weight, trachytic rockfalls were 2-3 times heavier than agglomerate rockfalls. An analysis of rockfall behavior from the simulation indicates that the impact energy on the road exceeded the absorbing energy of a standard rockfall protection fence; however, the rockfall was secured when a ring-net was applied.