• Title/Summary/Keyword: 계층 알고리즘

Search Result 1,086, Processing Time 0.025 seconds

Deep Learning Architectures and Applications (딥러닝의 모형과 응용사례)

  • Ahn, SungMahn
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.2
    • /
    • pp.127-142
    • /
    • 2016
  • Deep learning model is a kind of neural networks that allows multiple hidden layers. There are various deep learning architectures such as convolutional neural networks, deep belief networks and recurrent neural networks. Those have been applied to fields like computer vision, automatic speech recognition, natural language processing, audio recognition and bioinformatics where they have been shown to produce state-of-the-art results on various tasks. Among those architectures, convolutional neural networks and recurrent neural networks are classified as the supervised learning model. And in recent years, those supervised learning models have gained more popularity than unsupervised learning models such as deep belief networks, because supervised learning models have shown fashionable applications in such fields mentioned above. Deep learning models can be trained with backpropagation algorithm. Backpropagation is an abbreviation for "backward propagation of errors" and a common method of training artificial neural networks used in conjunction with an optimization method such as gradient descent. The method calculates the gradient of an error function with respect to all the weights in the network. The gradient is fed to the optimization method which in turn uses it to update the weights, in an attempt to minimize the error function. Convolutional neural networks use a special architecture which is particularly well-adapted to classify images. Using this architecture makes convolutional networks fast to train. This, in turn, helps us train deep, muti-layer networks, which are very good at classifying images. These days, deep convolutional networks are used in most neural networks for image recognition. Convolutional neural networks use three basic ideas: local receptive fields, shared weights, and pooling. By local receptive fields, we mean that each neuron in the first(or any) hidden layer will be connected to a small region of the input(or previous layer's) neurons. Shared weights mean that we're going to use the same weights and bias for each of the local receptive field. This means that all the neurons in the hidden layer detect exactly the same feature, just at different locations in the input image. In addition to the convolutional layers just described, convolutional neural networks also contain pooling layers. Pooling layers are usually used immediately after convolutional layers. What the pooling layers do is to simplify the information in the output from the convolutional layer. Recent convolutional network architectures have 10 to 20 hidden layers and billions of connections between units. Training deep learning networks has taken weeks several years ago, but thanks to progress in GPU and algorithm enhancement, training time has reduced to several hours. Neural networks with time-varying behavior are known as recurrent neural networks or RNNs. A recurrent neural network is a class of artificial neural network where connections between units form a directed cycle. This creates an internal state of the network which allows it to exhibit dynamic temporal behavior. Unlike feedforward neural networks, RNNs can use their internal memory to process arbitrary sequences of inputs. Early RNN models turned out to be very difficult to train, harder even than deep feedforward networks. The reason is the unstable gradient problem such as vanishing gradient and exploding gradient. The gradient can get smaller and smaller as it is propagated back through layers. This makes learning in early layers extremely slow. The problem actually gets worse in RNNs, since gradients aren't just propagated backward through layers, they're propagated backward through time. If the network runs for a long time, that can make the gradient extremely unstable and hard to learn from. It has been possible to incorporate an idea known as long short-term memory units (LSTMs) into RNNs. LSTMs make it much easier to get good results when training RNNs, and many recent papers make use of LSTMs or related ideas.

A Checklist to Improve the Fairness in AI Financial Service: Focused on the AI-based Credit Scoring Service (인공지능 기반 금융서비스의 공정성 확보를 위한 체크리스트 제안: 인공지능 기반 개인신용평가를 중심으로)

  • Kim, HaYeong;Heo, JeongYun;Kwon, Hochang
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.3
    • /
    • pp.259-278
    • /
    • 2022
  • With the spread of Artificial Intelligence (AI), various AI-based services are expanding in the financial sector such as service recommendation, automated customer response, fraud detection system(FDS), credit scoring services, etc. At the same time, problems related to reliability and unexpected social controversy are also occurring due to the nature of data-based machine learning. The need Based on this background, this study aimed to contribute to improving trust in AI-based financial services by proposing a checklist to secure fairness in AI-based credit scoring services which directly affects consumers' financial life. Among the key elements of trustworthy AI like transparency, safety, accountability, and fairness, fairness was selected as the subject of the study so that everyone could enjoy the benefits of automated algorithms from the perspective of inclusive finance without social discrimination. We divided the entire fairness related operation process into three areas like data, algorithms, and user areas through literature research. For each area, we constructed four detailed considerations for evaluation resulting in 12 checklists. The relative importance and priority of the categories were evaluated through the analytic hierarchy process (AHP). We use three different groups: financial field workers, artificial intelligence field workers, and general users which represent entire financial stakeholders. According to the importance of each stakeholder, three groups were classified and analyzed, and from a practical perspective, specific checks such as feasibility verification for using learning data and non-financial information and monitoring new inflow data were identified. Moreover, financial consumers in general were found to be highly considerate of the accuracy of result analysis and bias checks. We expect this result could contribute to the design and operation of fair AI-based financial services.

Local Shape Analysis of the Hippocampus using Hierarchical Level-of-Detail Representations (계층적 Level-of-Detail 표현을 이용한 해마의 국부적인 형상 분석)

  • Kim Jeong-Sik;Choi Soo-Mi;Choi Yoo-Ju;Kim Myoung-Hee
    • The KIPS Transactions:PartA
    • /
    • v.11A no.7 s.91
    • /
    • pp.555-562
    • /
    • 2004
  • Both global volume reduction and local shape changes of hippocampus within the brain indicate their abnormal neurological states. Hippocampal shape analysis consists of two main steps. First, construct a hippocampal shape representation model ; second, compute a shape similarity from this representation. This paper proposes a novel method for the analysis of hippocampal shape using integrated Octree-based representation, containing meshes, voxels, and skeletons. First of all, we create multi-level meshes by applying the Marching Cube algorithm to the hippocampal region segmented from MR images. This model is converted to intermediate binary voxel representation. And we extract the 3D skeleton from these voxels using the slice-based skeletonization method. Then, in order to acquire multiresolutional shape representation, we store hierarchically the meshes, voxels, skeletons comprised in nodes of the Octree, and we extract the sample meshes using the ray-tracing based mesh sampling technique. Finally, as a similarity measure between the shapes, we compute $L_2$ Norm and Hausdorff distance for each sam-pled mesh pair by shooting the rays fired from the extracted skeleton. As we use a mouse picking interface for analyzing a local shape inter-actively, we provide an interaction and multiresolution based analysis for the local shape changes. In this paper, our experiment shows that our approach is robust to the rotation and the scale, especially effective to discriminate the changes between local shapes of hippocampus and more-over to increase the speed of analysis without degrading accuracy by using a hierarchical level-of-detail approach.

Job Preference Analysis and Job Matching System Development for the Middle Aged Class (중장년층 일자리 요구사항 분석 및 인력 고용 매칭 시스템 개발)

  • Kim, Seongchan;Jang, Jincheul;Kim, Seong Jung;Chin, Hyojin;Yi, Mun Yong
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.4
    • /
    • pp.247-264
    • /
    • 2016
  • With the rapid acceleration of low-birth rate and population aging, the employment of the neglected groups of people including the middle aged class is a crucial issue in South Korea. In particular, in the 2010s, the number of the middle aged who want to find a new job after retirement age is significantly increasing with the arrival of the retirement time of the baby boom generation (born 1955-1963). Despite the importance of matching jobs to this emerging middle aged class, private job portals as well as the Korean government do not provide any online job service tailored for them. A gigantic amount of job information is available online; however, the current recruiting systems do not meet the demand of the middle aged class as their primary targets are young workers. We are in dire need of a specially designed recruiting system for the middle aged. Meanwhile, when users are searching the desired occupations on the Worknet website, provided by the Korean Ministry of Employment and Labor, users are experiencing discomfort to search for similar jobs because Worknet is providing filtered search results on the basis of exact matches of a preferred job code. Besides, according to our Worknet data analysis, only about 24% of job seekers had landed on a job position consistent with their initial preferred job code while the rest had landed on a position different from their initial preference. To improve the situation, particularly for the middle aged class, we investigate a soft job matching technique by performing the following: 1) we review a user behavior logs of Worknet, which is a public job recruiting system set up by the Korean government and point out key system design implications for the middle aged. Specifically, we analyze the job postings that include preferential tags for the middle aged in order to disclose what types of jobs are in favor of the middle aged; 2) we develope a new occupation classification scheme for the middle aged, Korea Occupation Classification for the Middle-aged (KOCM), based on the similarity between jobs by reorganizing and modifying a general occupation classification scheme. When viewed from the perspective of job placement, an occupation classification scheme is a way to connect the enterprises and job seekers and a basic mechanism for job placement. The key features of KOCM include establishing the Simple Labor category, which is the most requested category by enterprises; and 3) we design MOMA (Middle-aged Occupation Matching Algorithm), which is a hybrid job matching algorithm comprising constraint-based reasoning and case-based reasoning. MOMA incorporates KOCM to expand query to search similar jobs in the database. MOMA utilizes cosine similarity between user requirement and job posting to rank a set of postings in terms of preferred job code, salary, distance, and job type. The developed system using MOMA demonstrates about 20 times of improvement over the hard matching performance. In implementing the algorithm for a web-based application of recruiting system for the middle aged, we also considered the usability issue of making the system easier to use, which is especially important for this particular class of users. That is, we wanted to improve the usability of the system during the job search process for the middle aged users by asking to enter only a few simple and core pieces of information such as preferred job (job code), salary, and (allowable) distance to the working place, enabling the middle aged to find a job suitable to their needs efficiently. The Web site implemented with MOMA should be able to contribute to improving job search of the middle aged class. We also expect the overall approach to be applicable to other groups of people for the improvement of job matching results.

A Time Series Graph based Convolutional Neural Network Model for Effective Input Variable Pattern Learning : Application to the Prediction of Stock Market (효과적인 입력변수 패턴 학습을 위한 시계열 그래프 기반 합성곱 신경망 모형: 주식시장 예측에의 응용)

  • Lee, Mo-Se;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.167-181
    • /
    • 2018
  • Over the past decade, deep learning has been in spotlight among various machine learning algorithms. In particular, CNN(Convolutional Neural Network), which is known as the effective solution for recognizing and classifying images or voices, has been popularly applied to classification and prediction problems. In this study, we investigate the way to apply CNN in business problem solving. Specifically, this study propose to apply CNN to stock market prediction, one of the most challenging tasks in the machine learning research. As mentioned, CNN has strength in interpreting images. Thus, the model proposed in this study adopts CNN as the binary classifier that predicts stock market direction (upward or downward) by using time series graphs as its inputs. That is, our proposal is to build a machine learning algorithm that mimics an experts called 'technical analysts' who examine the graph of past price movement, and predict future financial price movements. Our proposed model named 'CNN-FG(Convolutional Neural Network using Fluctuation Graph)' consists of five steps. In the first step, it divides the dataset into the intervals of 5 days. And then, it creates time series graphs for the divided dataset in step 2. The size of the image in which the graph is drawn is $40(pixels){\times}40(pixels)$, and the graph of each independent variable was drawn using different colors. In step 3, the model converts the images into the matrices. Each image is converted into the combination of three matrices in order to express the value of the color using R(red), G(green), and B(blue) scale. In the next step, it splits the dataset of the graph images into training and validation datasets. We used 80% of the total dataset as the training dataset, and the remaining 20% as the validation dataset. And then, CNN classifiers are trained using the images of training dataset in the final step. Regarding the parameters of CNN-FG, we adopted two convolution filters ($5{\times}5{\times}6$ and $5{\times}5{\times}9$) in the convolution layer. In the pooling layer, $2{\times}2$ max pooling filter was used. The numbers of the nodes in two hidden layers were set to, respectively, 900 and 32, and the number of the nodes in the output layer was set to 2(one is for the prediction of upward trend, and the other one is for downward trend). Activation functions for the convolution layer and the hidden layer were set to ReLU(Rectified Linear Unit), and one for the output layer set to Softmax function. To validate our model - CNN-FG, we applied it to the prediction of KOSPI200 for 2,026 days in eight years (from 2009 to 2016). To match the proportions of the two groups in the independent variable (i.e. tomorrow's stock market movement), we selected 1,950 samples by applying random sampling. Finally, we built the training dataset using 80% of the total dataset (1,560 samples), and the validation dataset using 20% (390 samples). The dependent variables of the experimental dataset included twelve technical indicators popularly been used in the previous studies. They include Stochastic %K, Stochastic %D, Momentum, ROC(rate of change), LW %R(Larry William's %R), A/D oscillator(accumulation/distribution oscillator), OSCP(price oscillator), CCI(commodity channel index), and so on. To confirm the superiority of CNN-FG, we compared its prediction accuracy with the ones of other classification models. Experimental results showed that CNN-FG outperforms LOGIT(logistic regression), ANN(artificial neural network), and SVM(support vector machine) with the statistical significance. These empirical results imply that converting time series business data into graphs and building CNN-based classification models using these graphs can be effective from the perspective of prediction accuracy. Thus, this paper sheds a light on how to apply deep learning techniques to the domain of business problem solving.

Design of a Multi-Band Network Selection System for Seamless Maritime Communication Networks (단절 없는 해상 통신 네트워크를 위한 멀티대역 네트워크선택기 시스템 설계)

  • Cho, A-ra;Yun, Changho;Lim, Yong-kon;Choi, Youngchol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.6
    • /
    • pp.1252-1260
    • /
    • 2017
  • As digital communication technology evolves, the diversity of maritime communication methods has benn increasing due to the emergence of new maritime communication technologies such as digital very high frequency (VHF) communication systems and LTE-M as well as traditional conventional maritime communication systems. At sea, all maritime communication methods may be available, but only some communication methods may be available depending on the location. In this paper, we propose a multi-band network selection (MNS) system that can provide seamless maritime communication service by switching to an optimal communication band among available communication systems, depending on network environment and user requirements. The proposed MNS system in the middleware layer is designed to be able to interface with two types of digital VHF communication systems that satisfy Annex 1 and Annex 4 of ITU-R M. 1842-1, LTE, and high frequency (HF) communication systems. We assign priority to each communication band, and design an optimal communication band determination algorithm based on this priority.

Development of a Model for Calculating Road Congestion Toll with Sensitivity Analysis (민감도 분석을 이용한 도로 혼잡통행료 산정 모형 개발)

  • Kim, Byung-Kwan;Lim, Yong-Taek;Lim, Kang-Won
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.5
    • /
    • pp.139-149
    • /
    • 2004
  • As the expansion of road capacity has become impractical in many urban areas, congestion pricing has been widely considered as an effective method to reduce urban traffic congestion in recent years. The principal reason is that the congestion pricing may lead the user equilibrium (UE) flow pattern to system optimum (SO) pattern in road network. In the context of network equilibrium, the link tolls according to the marginal cost pricing principle can user an UE flow to a SO pattern. Thus, the pricing method offers an efficient tool for moving toward system optimal traffic conditions on the network. This paper proposes a continuous network design program (CNDP) in network equilibrium condition, in order to find optimal congestion toll for maximizing net economic benefit (NEB). The model could be formulated as a bi-level program with continuous variable(congestion toll) such that the upper level problem is for maximizing the NEB in elastic demand, while the lower level is for describing route choice of road users. The bi-level CNDP is intrinsically nonlinear, non-convex, and hence it might be difficult to solve. So, we suggest a heuristic solution algorithm, which adopt derivative information of link flow with respect to design parameter, or congestion toll. Two example networks are used for test of the model proposed in the paper.

Building Matching Analysis and New Building Update for the Integrated Use of the Digital Map and the Road Name Address Map (수치지도와 도로명주소지도의 통합 활용을 위한 건물 매칭 분석과 신규 건물 갱신)

  • Yeom, Jun Ho;Huh, Yong;Lee, Jeabin
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.5
    • /
    • pp.459-467
    • /
    • 2014
  • The importance of fusion and association using established spatial information has increased gradually with the production and supply of various spatial data by public institutions. The generation of necessary spatial information without field investigation and additional surveying can reduce time, labor, and financial costs. However, the study of the integration of the newly introduced road name address map with the digital map is very insufficient. Even though the use of the road name address map is encouraged for public works related to spatial information, the digital map is still widely used because it is the national basic map. Therefore, in this study, building matching and update were performed to associate the digital map with the road name address map. After geometric calibration using the block-based ICP (Iterative Closest Point) method, multi-scale corresponding pair searching with hierarchical clustering was applied to detect the multi-type match. The accuracy assessment showed that the proposed method is more than 95% accurate and the matched building layer of the two maps is useful for the integrated application and fusion. In addition, the use of the road name address map, which carries the latest and most frequently renewed data, enables cost-effective updating of new buildings.

A Hybrid Storage Architecture with a Content Caching Algorithm for Networked Digital Signage (네트워크 디지털 사이니지를 위한 콘텐츠 캐싱 알고리즘을 적용한 하이브리드 스토리지 구조)

  • Nam, Young-Jin;Jeong, Soon-Hwan;Park, Young-Kyun
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.5
    • /
    • pp.651-663
    • /
    • 2012
  • Networked digital signage downloads necessary multimedia contents from a large-sized storage on WAN to its local disk of a limited size before starting their playback. If the required time to download the entire contents gets longer, a start time to play the contents at the digital signage could be delayed. In this paper, we propose a hybrid storage architecture that not only inserts an iSCSI storage layer between the existing local disk and the WAN storage, but offers a contents caching scheme in order to obtain all the necessary contents in digital signage rapidly. The proposed caching scheme determines how to place the downloaded contents both in the local disk and the iSCSI storage. Uniquely, the proposed caching scheme manages the iSCSI storage space by dividing it into two regions: (1) in one region, the digital signage can play the contents directly without downloading them into the local disk; (2) in the other region, the digital signage cannot. Performance evaluations on a simulator and an actual system with workloads of various contents show that a contents-downloading time of the hybrid storage architecture is at maximum three times shorter than that of the existing storage architecture.

Data Congestion Control Using Drones in Clustered Heterogeneous Wireless Sensor Network (클러스터된 이기종 무선 센서 네트워크에서의 드론을 이용한 데이터 혼잡 제어)

  • Kim, Tae-Rim;Song, Jong-Gyu;Im, Hyun-Jae;Kim, Bum-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.12-19
    • /
    • 2020
  • The clustered heterogeneous wireless sensor network is comprised of sensor nodes and cluster heads, which are hierarchically organized for different objectives. In the network, we should especially take care of managing node resources to enhance network performance based on memory and battery capacity constraints. For instances, if some interesting events occur frequently in the vicinity of particular sensor nodes, those nodes might receive massive amounts of data. Data congestion can happen due to a memory bottleneck or link disconnection at cluster heads because the remaining memory space is filled with those data. In this paper, we utilize drones as mobile sinks to resolve data congestion and model the network, sensor nodes, and cluster heads. We also design a cost function and a congestion indicator to calculate the degree of congestion. Then we propose a data congestion map index and a data congestion mapping scheme to deploy drones at optimal points. Using control variable, we explore the relationship between the degree of congestion and the number of drones to be deployed, as well as the number of drones that must be below a certain degree of congestion and within communication range. Furthermore, we show that our algorithm outperforms previous work by a minimum of 20% in terms of memory overflow.