최근까지 네트워크 계층에서 수행되는 IP 멀티캐스트는 많은 관심과 연구가 진행되고 있다. 하지만 유니캐스트 라우터들로 구성된 현재의 인터넷 망에서 IP 멀티캐스트의 적용은 불가능한 상태이다. 때문에 응용계층 멀티캐스트가 IP 멀티캐스트의 대안으로 제시되고 있다. IP 멀티캐스트가 네트워크 라우터들에 의존적인 반면 응용계층 멀티캐스트는 네트워크 계층과 독립적으로 수행된다. 본 논문에서는 실시간 미디어의 효과적인 전송을 위한 source에서 end-system들에 이르는 평균 지연 시간을 최소화하는 응용계층 멀티캐스트 트리 구성 알고리즘을 제안한다. 제안하는 알고리즘은 제어 변수로써 각 end-system들의 계산 수행능력과 네트워크 조건을 고려하며 트리를 구성하는 몇몇 end-system들에게만 부하가 집중되는 현상을 방지하도록 구성되었다. 제안하는 알고리즘에 의한 응용계층 멀티캐스트 트리는 clustering과 변형된 Dijkstra 알고리즘에 의해 구성된다. 즉, source와 proxy-sender들 사이의 트리와 각 cluster안에서 트리를 구성함으로써 전체 트리를 생성한다. 실험을 통하여 제안하는 알고리즘이 기존 알고리즘 보다 효과적임을 보였다.
군집화 알고리즘은 그 종류에 따라 만들어낼 수 있는 군집의 종류와 보여줄 수 있는 정보의 수준이 차이가 난다. 밀도기반 군집화 알고리즘은 데이터 분포 상의 임의의 모양을 가진 군집을 잘 잡아내지만 보여줄 수 있는 계층정보가 매우 적거나 없는 수준이고, 반면 계층적 군집화 알고리즘은 자세한 계층 정보를 보여주지만 구 모양의 군집 외에는 잘 잡아내지 못한다. 이 논문에서는 이러한 두 군집화 방식의 대표적 알고리즘인 OPTICS와 응집 계층 군집화 알고리즘의 장점만을 취하는 계층 발생 프레임워크를 제시하고 이와 더불어 효과적 데이터 분석을 위한 여러 시각화, 상호작용 기법을 지원하는 시각적 분석 애플리케이션을 제공한다.
교통량배분문제 가운데 다중계층 교통량배분문제는 유일해가 보장되지 않는 대표적 사례로 최근 들어 모형의 정식화 및 해법에 관해서 활발하게 전개되고 있다. 정식화에 있어서는 변동부등식이나 고정점 문제를 활용한 정식화가 보편적으로 활용되고 있으나 해법(알고리즘)에 관한 연구는 미흡한 실정이다. 본 연구에서는 변동부등식으로 정의된 다중계층 이용자균형 교통량배분문제의 해법으로서 GA알고리즘과 대각화알고리즘, 군집화알고리즘을 조합한 Hybrid Algorithm을 개발, 제안한다. GA알고리즘과 군집화알고리즘은 해의 탐색을 전역적이면서도 효과적으로 수행하기 위해서 도입된 대각화 알고리즘의 보완적 알고리즘이라 할 수 있다. 본 연구에서는 또한, 다중계층 이용자균형 교통량배분문제의 해법으로서의 제안된 AMSA(The Algorithm of Multiclass Static User Equilibrium Assignment)의 특징을 예제풀이를 통해서 설명하고 있다.
본 논문에서 프레임 율 향상을 위한 새로운 움직임 추정 알고리즘에 대해 제안한다. 계산량을 줄이고 다해상도의 영상을 이용하기 위하여 원본 프레임들을 계층적 구조로 형성하고, 최상위 계층에서 단방향 움직임 추정을 수행한다. 최상위 계층은 낮은 해상도 때문에 움직임 벡터의 정확도가 낮아지므로, 정확도를 향상시키기 위해 각각의 블록은 5 개의 움직임 벡터 후보들을 가진다. 이 후보들은 아래 계층들에서 수정되며, 움직임 추정이 완료되면 최하위 계층의 움직임 벡터들은 SAD (sum of absolute difference) 값을 이용해서 최종적으로 수정된다. 이렇게 구해진 단방향 움직임 벡터들은 양방향 움직임 벡터로 변환되고 양방향 보간법을 사용하여 보간 프레임을 생성한다. 결과적으로, 제안하는 알고리즘은 기존 알고리즘들에 비해 낮은 계산량을 나타내면서 PSNR (peak signal-to-noise ratio) 수치에서 최대 1.3 dB 의 향상을 나타냈고, 주관적으로도 더 선명한 결과를 보여주었다.
인터넷 비디오 방송 같은 멀티미디어 응용 프로그램들은 네트워크를 통한 비디오 전송을 필요로 한다. 그런데 네트워크 자원에 제약이 많은 경우에는 전송되는 비디오 스트림의 손실이 불가피하며 이러한 손실이 클라이언트나 네트워크에서 일어난다면 네트워크 자원의 낭비가 생기게 된다. 이에 본 논문에서는 제약이 많은 네트워크를 통해 계층적 인코딩이 적용된 비디오 스트림을 전송할 때 서버가 프레임 전체를 버리지 않고 가능하면 덜 중요한 계층만을 최적으로 버리는 선택적 계층 삭제 알고리즘을 제안하였다. 어떤 계층을 버리는데 드는 비용을 클라이언트 측에서 얻을 수 있는 QoS와 연관지어 볼 때, 제안하는 선택적 계층 삭제 알고리즘은 네트워크 자원 제약이 커질수록 기존의 선택적 프레임 삭제 알고리즘보다 높은 QoS를 보여주었다.
부부분불완전 데이터(Partially Missing Data) 또는 데이터의 속성 값이 표현되는 정도의 깊이가 서로 다른 데이터를 학습하는데 있어서 속성값계층구조(Attribute Value Taxonomy, AVT)를 기반으로 학습하면 기존의 학습 알고리즘을 통해 얻은 결과보다 정확하고 간결한 분류기를 얻을 수 있다는 사실이 밝혀졌다. 하지만 이러한 속성값계층구조는 처음부터 전문가 또는 데이터 도메인에 대한 지식을 가지고 있는 사람에 의해 만들어져 제공되어야 한다. 이러한 수작업을 통한 속성값계층구조를 생성하기 위해서는 많은 시간이 걸리며 생성과정에서 오류가 발생할 수 있다. 또한 데이터 도메인에 따라서 속성값계층구조를 제공할 전문가가 부재한 경우가 있다. 이러한 배경 아래 본 논문은 유전자 알고리즘을 통해 자동으로 근 최적의 속성값계층구조를 생성하는 알고리즘(GA-AVT-Learner)을 제안한다. 본 논문의 실험은 다양한 실제 데이터를 가지고 GA-AVT-Learner로 생성한 속성값계층구조를 다른 속성값계층구조와 비교하였다. 따라서 GA-AVT-Learner에 의해 생성된 속성값계층구조가 정확하고 간결한 분류기를 제공함을 보이고, 불완전데이터 처리에 있어서도 높은 효율을 보임을 실험적으로 증명하였다.
인터넷망의 지속적인 발달과 더불어 웹서비스가 차지하는 비중은 매우 커지고 있다. 이와 관련해 서비스 발견을 위한 다양한 노력들이 진행되었으며. 그 중에서도 DAML-S문서로 기술된 매치메이커에서 제시한 알고리즘은 서비스 발견자와 서비스 제공자사이의 서비스 발견에 대한 유사도 측정의 한 방법을 제시하고 있다. 하지만 온톨로지상의 관계표현에 있어 네 가지 규칙만을 적용하여 정밀한 유사도 측정이 불가능하다는 단점이 있다. 따라서 본 논문에서는 기존의 알고리즘의 개선을 위해 두 가지 유사도 측정함수 1) 계층구조함수 2) 계층계수함수를 정의하고, 이에 기반한 새로운 서비스 발견 알고리즘을 제시하고자 한다.
이 연구는 계층적 분류체계를 기반으로 자동분류를 수행할 HiCat 알고리즘을 제안한다. HiCat 알고리즘은 DDC 지식베이스의 주제어와 기계학습을 거친 정보를 동시에 이용하고, 각 계층별로 주제적합성가중치를 구해 최종 주제범주를 결정한다. 이 알고리즘이 최적의 성능을 보이는 조건을 알아보고, 일반 분류기와의 성능 비교를 통해 HiCat 알고리즘을 평가해 보았다.
본 논문은 계층적 분류기를 제안하여 실시간으로 얼굴 영역을 검출하고, PT(pan-tilt) 카메라를 통해 동적으로 얼굴을 추적할 수 있는 강인한 추적 알고리즘을 구현하고자 한다. 제안된 알고리즘은 분류기 학습, 실시간 얼굴 영역 검출, 추적의 세 단계로 구성된다. 분류기 학습은 AdaBoost 알고리즘을 이용하여, 독특한 얼굴 특징을 추출하는 계층적 분류기를 생성한다. 계층적 분류기는 높은 정확도를 가진 분류기들이 단계적으로 결합됨으로써 우수한 검출 성능으로 수행된다. 실시간 얼굴 영역 검출은 생성된 계층적 분류기를 통해, 빠르고 효율적으로 얼굴 영역을 찾아낸다. 추적은 PT 카메라를 통해 동적으로 검출 영역을 확장시키며, 이전 단계에서 추출된 얼굴 영역의 위치 정보를 이용하여 수행한다. 제안된 알고리즘은 계산의 효율성과 검출 성능을 동시에 증가시키며, 얼굴 검출 수행은 2초당 약 15프레임을 실시간으로 처리한다.
정보통신의 기술이 발달하면서 정보의 양이 많아지고 사용자의 질의에 대한 검색 결과 리스트도 많이 추출되므로 빠르고 고품질의 문서 클러스터링 알고리즘이 중요한 역할을 하고 있다. 많은 논문들이 계층적 클러스터링 방법을 이용하여 좋은 성능을 보이지만 시간이 많이 소요된다. 반면 K-means 알고리즘은 시간 복잡도를 줄일 수 있는 방법이다. 본 논문에서는 계층적 클러스터링 시스템인 콘도르(Condor) 시스템에서 간단하고 고품질이며 효율적으로 정보 검색 할 수 있도록 구현하였다. 이 시스템은 K-Means Algorithm을 이용하였으며 클러스터 계층 깊이와 초기값을 조절하여 $88\%$의 정확율을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.