• 제목/요약/키워드: 계층 알고리즘

검색결과 1,086건 처리시간 0.033초

실시간 미디어 전송을 위한 응용계층 멀티캐스트 트리 구성 알고리즘 (Application Layer Multicast Tree Constructing Algorithm for Real-time Media Delivery)

  • 송황준;이동섭
    • 한국통신학회논문지
    • /
    • 제29권11B
    • /
    • pp.991-1000
    • /
    • 2004
  • 최근까지 네트워크 계층에서 수행되는 IP 멀티캐스트는 많은 관심과 연구가 진행되고 있다. 하지만 유니캐스트 라우터들로 구성된 현재의 인터넷 망에서 IP 멀티캐스트의 적용은 불가능한 상태이다. 때문에 응용계층 멀티캐스트가 IP 멀티캐스트의 대안으로 제시되고 있다. IP 멀티캐스트가 네트워크 라우터들에 의존적인 반면 응용계층 멀티캐스트는 네트워크 계층과 독립적으로 수행된다. 본 논문에서는 실시간 미디어의 효과적인 전송을 위한 source에서 end-system들에 이르는 평균 지연 시간을 최소화하는 응용계층 멀티캐스트 트리 구성 알고리즘을 제안한다. 제안하는 알고리즘은 제어 변수로써 각 end-system들의 계산 수행능력과 네트워크 조건을 고려하며 트리를 구성하는 몇몇 end-system들에게만 부하가 집중되는 현상을 방지하도록 구성되었다. 제안하는 알고리즘에 의한 응용계층 멀티캐스트 트리는 clustering과 변형된 Dijkstra 알고리즘에 의해 구성된다. 즉, source와 proxy-sender들 사이의 트리와 각 cluster안에서 트리를 구성함으로써 전체 트리를 생성한다. 실험을 통하여 제안하는 알고리즘이 기존 알고리즘 보다 효과적임을 보였다.

계층 발생 프레임워크를 이용한 군집 계층 시각화 (Visualizing Cluster Hierarchy Using Hierarchy Generation Framework)

  • 신동화;이세희;서진욱
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제21권6호
    • /
    • pp.436-441
    • /
    • 2015
  • 군집화 알고리즘은 그 종류에 따라 만들어낼 수 있는 군집의 종류와 보여줄 수 있는 정보의 수준이 차이가 난다. 밀도기반 군집화 알고리즘은 데이터 분포 상의 임의의 모양을 가진 군집을 잘 잡아내지만 보여줄 수 있는 계층정보가 매우 적거나 없는 수준이고, 반면 계층적 군집화 알고리즘은 자세한 계층 정보를 보여주지만 구 모양의 군집 외에는 잘 잡아내지 못한다. 이 논문에서는 이러한 두 군집화 방식의 대표적 알고리즘인 OPTICS와 응집 계층 군집화 알고리즘의 장점만을 취하는 계층 발생 프레임워크를 제시하고 이와 더불어 효과적 데이터 분석을 위한 여러 시각화, 상호작용 기법을 지원하는 시각적 분석 애플리케이션을 제공한다.

다중계층 통행배분 알고리즘 개발 (다차종을 중심으로) (Development of multiclass traffic assignment algorithm (Focused on multi-vehicle))

  • 강진구;류시균;이영인
    • 대한교통학회지
    • /
    • 제20권6호
    • /
    • pp.99-113
    • /
    • 2002
  • 교통량배분문제 가운데 다중계층 교통량배분문제는 유일해가 보장되지 않는 대표적 사례로 최근 들어 모형의 정식화 및 해법에 관해서 활발하게 전개되고 있다. 정식화에 있어서는 변동부등식이나 고정점 문제를 활용한 정식화가 보편적으로 활용되고 있으나 해법(알고리즘)에 관한 연구는 미흡한 실정이다. 본 연구에서는 변동부등식으로 정의된 다중계층 이용자균형 교통량배분문제의 해법으로서 GA알고리즘과 대각화알고리즘, 군집화알고리즘을 조합한 Hybrid Algorithm을 개발, 제안한다. GA알고리즘과 군집화알고리즘은 해의 탐색을 전역적이면서도 효과적으로 수행하기 위해서 도입된 대각화 알고리즘의 보완적 알고리즘이라 할 수 있다. 본 연구에서는 또한, 다중계층 이용자균형 교통량배분문제의 해법으로서의 제안된 AMSA(The Algorithm of Multiclass Static User Equilibrium Assignment)의 특징을 예제풀이를 통해서 설명하고 있다.

프레임 율 향상을 위한 계층적 다방향 움직임 추정 알고리즘 (Hierarchical Multidirectional Motion Estimation Algorithm for Frame Rate Up-Conversion)

  • 유송현;박범준;정제창
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2017년도 하계학술대회
    • /
    • pp.70-73
    • /
    • 2017
  • 본 논문에서 프레임 율 향상을 위한 새로운 움직임 추정 알고리즘에 대해 제안한다. 계산량을 줄이고 다해상도의 영상을 이용하기 위하여 원본 프레임들을 계층적 구조로 형성하고, 최상위 계층에서 단방향 움직임 추정을 수행한다. 최상위 계층은 낮은 해상도 때문에 움직임 벡터의 정확도가 낮아지므로, 정확도를 향상시키기 위해 각각의 블록은 5 개의 움직임 벡터 후보들을 가진다. 이 후보들은 아래 계층들에서 수정되며, 움직임 추정이 완료되면 최하위 계층의 움직임 벡터들은 SAD (sum of absolute difference) 값을 이용해서 최종적으로 수정된다. 이렇게 구해진 단방향 움직임 벡터들은 양방향 움직임 벡터로 변환되고 양방향 보간법을 사용하여 보간 프레임을 생성한다. 결과적으로, 제안하는 알고리즘은 기존 알고리즘들에 비해 낮은 계산량을 나타내면서 PSNR (peak signal-to-noise ratio) 수치에서 최대 1.3 dB 의 향상을 나타냈고, 주관적으로도 더 선명한 결과를 보여주었다.

  • PDF

계층적 인코딩이 적용된 선택적 계층 삭제를 통한 트래픽 완화 기법 (Traffic Smoothing using Selective Layer Discard with Layered Encoding)

  • 노지원;강현정;이미정
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 가을 학술발표논문집 Vol.27 No.2 (3)
    • /
    • pp.484-486
    • /
    • 2000
  • 인터넷 비디오 방송 같은 멀티미디어 응용 프로그램들은 네트워크를 통한 비디오 전송을 필요로 한다. 그런데 네트워크 자원에 제약이 많은 경우에는 전송되는 비디오 스트림의 손실이 불가피하며 이러한 손실이 클라이언트나 네트워크에서 일어난다면 네트워크 자원의 낭비가 생기게 된다. 이에 본 논문에서는 제약이 많은 네트워크를 통해 계층적 인코딩이 적용된 비디오 스트림을 전송할 때 서버가 프레임 전체를 버리지 않고 가능하면 덜 중요한 계층만을 최적으로 버리는 선택적 계층 삭제 알고리즘을 제안하였다. 어떤 계층을 버리는데 드는 비용을 클라이언트 측에서 얻을 수 있는 QoS와 연관지어 볼 때, 제안하는 선택적 계층 삭제 알고리즘은 네트워크 자원 제약이 커질수록 기존의 선택적 프레임 삭제 알고리즘보다 높은 QoS를 보여주었다.

  • PDF

유전자 알고리즘 기반의 불완전 데이터 학습을 위한 속성값계층구조의 생성 (Genetic Algorithm Based Attribute Value Taxonomy Generation for Learning Classifiers with Missing Data)

  • 주진우;양지훈
    • 정보처리학회논문지B
    • /
    • 제13B권2호
    • /
    • pp.133-138
    • /
    • 2006
  • 부부분불완전 데이터(Partially Missing Data) 또는 데이터의 속성 값이 표현되는 정도의 깊이가 서로 다른 데이터를 학습하는데 있어서 속성값계층구조(Attribute Value Taxonomy, AVT)를 기반으로 학습하면 기존의 학습 알고리즘을 통해 얻은 결과보다 정확하고 간결한 분류기를 얻을 수 있다는 사실이 밝혀졌다. 하지만 이러한 속성값계층구조는 처음부터 전문가 또는 데이터 도메인에 대한 지식을 가지고 있는 사람에 의해 만들어져 제공되어야 한다. 이러한 수작업을 통한 속성값계층구조를 생성하기 위해서는 많은 시간이 걸리며 생성과정에서 오류가 발생할 수 있다. 또한 데이터 도메인에 따라서 속성값계층구조를 제공할 전문가가 부재한 경우가 있다. 이러한 배경 아래 본 논문은 유전자 알고리즘을 통해 자동으로 근 최적의 속성값계층구조를 생성하는 알고리즘(GA-AVT-Learner)을 제안한다. 본 논문의 실험은 다양한 실제 데이터를 가지고 GA-AVT-Learner로 생성한 속성값계층구조를 다른 속성값계층구조와 비교하였다. 따라서 GA-AVT-Learner에 의해 생성된 속성값계층구조가 정확하고 간결한 분류기를 제공함을 보이고, 불완전데이터 처리에 있어서도 높은 효율을 보임을 실험적으로 증명하였다.

온톨로지 계층관계를 이용한 서비스 발견 알고리즘

  • 최원종;양재영;최중민;조현규;조현성;김경일
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 가을 학술발표논문집 Vol.30 No.2 (1)
    • /
    • pp.28-30
    • /
    • 2003
  • 인터넷망의 지속적인 발달과 더불어 웹서비스가 차지하는 비중은 매우 커지고 있다. 이와 관련해 서비스 발견을 위한 다양한 노력들이 진행되었으며. 그 중에서도 DAML-S문서로 기술된 매치메이커에서 제시한 알고리즘은 서비스 발견자와 서비스 제공자사이의 서비스 발견에 대한 유사도 측정의 한 방법을 제시하고 있다. 하지만 온톨로지상의 관계표현에 있어 네 가지 규칙만을 적용하여 정밀한 유사도 측정이 불가능하다는 단점이 있다. 따라서 본 논문에서는 기존의 알고리즘의 개선을 위해 두 가지 유사도 측정함수 1) 계층구조함수 2) 계층계수함수를 정의하고, 이에 기반한 새로운 서비스 발견 알고리즘을 제시하고자 한다.

  • PDF

계층적 분류체계를 위한 자동분류 기법에 관한 연구 (An Experimental Study on Text Categorization for Hierarchical Classification)

  • 이영숙;정영미
    • 한국정보관리학회:학술대회논문집
    • /
    • 한국정보관리학회 2001년도 제8회 학술대회 논문집
    • /
    • pp.173-176
    • /
    • 2001
  • 이 연구는 계층적 분류체계를 기반으로 자동분류를 수행할 HiCat 알고리즘을 제안한다. HiCat 알고리즘은 DDC 지식베이스의 주제어와 기계학습을 거친 정보를 동시에 이용하고, 각 계층별로 주제적합성가중치를 구해 최종 주제범주를 결정한다. 이 알고리즘이 최적의 성능을 보이는 조건을 알아보고, 일반 분류기와의 성능 비교를 통해 HiCat 알고리즘을 평가해 보았다.

  • PDF

계층적 분류기를 이용한 실시간 얼굴 검출 및 추적 (Real-time face detection and tracking using hierarchical classifier)

  • 김수희;양창호;이배호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2003년도 추계학술발표논문집 (상)
    • /
    • pp.497-500
    • /
    • 2003
  • 본 논문은 계층적 분류기를 제안하여 실시간으로 얼굴 영역을 검출하고, PT(pan-tilt) 카메라를 통해 동적으로 얼굴을 추적할 수 있는 강인한 추적 알고리즘을 구현하고자 한다. 제안된 알고리즘은 분류기 학습, 실시간 얼굴 영역 검출, 추적의 세 단계로 구성된다. 분류기 학습은 AdaBoost 알고리즘을 이용하여, 독특한 얼굴 특징을 추출하는 계층적 분류기를 생성한다. 계층적 분류기는 높은 정확도를 가진 분류기들이 단계적으로 결합됨으로써 우수한 검출 성능으로 수행된다. 실시간 얼굴 영역 검출은 생성된 계층적 분류기를 통해, 빠르고 효율적으로 얼굴 영역을 찾아낸다. 추적은 PT 카메라를 통해 동적으로 검출 영역을 확장시키며, 이전 단계에서 추출된 얼굴 영역의 위치 정보를 이용하여 수행한다. 제안된 알고리즘은 계산의 효율성과 검출 성능을 동시에 증가시키며, 얼굴 검출 수행은 2초당 약 15프레임을 실시간으로 처리한다.

  • PDF

K-Means 알고리즘을 이용한 계층적 클러스터링에서 클러스터 계층 깊이와 초기값 선정 (Selection of Cluster Hierarchy Depth and Initial Centroids in Hierarchical Clustering using K-Means Algorithm)

  • 이신원;안동언;정성종
    • 정보관리학회지
    • /
    • 제21권4호
    • /
    • pp.173-185
    • /
    • 2004
  • 정보통신의 기술이 발달하면서 정보의 양이 많아지고 사용자의 질의에 대한 검색 결과 리스트도 많이 추출되므로 빠르고 고품질의 문서 클러스터링 알고리즘이 중요한 역할을 하고 있다. 많은 논문들이 계층적 클러스터링 방법을 이용하여 좋은 성능을 보이지만 시간이 많이 소요된다. 반면 K-means 알고리즘은 시간 복잡도를 줄일 수 있는 방법이다. 본 논문에서는 계층적 클러스터링 시스템인 콘도르(Condor) 시스템에서 간단하고 고품질이며 효율적으로 정보 검색 할 수 있도록 구현하였다. 이 시스템은 K-Means Algorithm을 이용하였으며 클러스터 계층 깊이와 초기값을 조절하여 $88\%$의 정확율을 보였다.