• 제목/요약/키워드: 계층적 컨볼루션 신경망

검색결과 14건 처리시간 0.023초

BERT 및 계층 그래프 컨볼루션 신경망 기반 감성분석 모델 (BERT & Hierarchical Graph Convolution Neural Network based Emotion Analysis Model)

  • 장쥔쥔;신종호;안수빈;박태영;노기섭
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.34-36
    • /
    • 2022
  • 기존 텍스트 감성 분석 모델에서는 일반적으로 전체 텍스트를 직접 모델링하고, 텍스트 내용 간의 계층적 관계를 덜 고려한다. 그러나 감정분석의 구현에서는 많은 텍스트가 여러 감정으로 뒤섞여 있다. 전체의 의미론적 모델링을 직접 수행하면 감성분석 모델의 판단 난도가 높아져 혼합 감정 문장의 분류에 적용하기 어려울 수 있다. 따라서 본 논문에서는 텍스트 계층을 고려한 감성 분석 모델 BHGCN을 제안한다. 이 모델에서는 BERT의 각 레이어의 숨겨진 상태의 출력이 노드로 사용되며, 상위 레이어와 하위 레이어 사이에 직접 연결이 이루어져 의미 계층이 있는 그래프 네트워크를 구축한다. BHGCN 모델은 계층별 의미론에 주의를 기울일 뿐만 아니라 계층적 관계에도 주의를 기울이기 때문에 혼합 감성 분류 작업을 처리하는 데 적합하다. 본 논문에서는 비교 실험을 통해 제안하는 BHGCN 모델이 명백한 경쟁 우위를 보인다는 것을 입증하였다.

  • PDF

Multiple Binarization Quadtree Framework for Optimizing Deep Learning-Based Smoke Synthesis Method

  • Kim, Jong-Hyun
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권4호
    • /
    • pp.47-53
    • /
    • 2021
  • 본 논문에서는 초해상도(Super-Resolution, SR)을 계산하는데 필요한 물리 기반 시뮬레이션 데이터를 효율적으로 분류하고 분할하여 빠르게 SR연산을 가능하게 하는 쿼드트리 기반 최적화 기법을 제안한다. 제안하는 방법은 입력 데이터로 사용하는 연기 시뮬레이션 데이터를 다운스케일링(Downscaling)하여 쿼드트리 연산 소요 시간을 대폭 감소시킨다. 이 과정에서 연기의 밀도를 이진화함으로써, 다운스케일링 과정에서 밀도가 수치 손실되는 문제를 완화하며 쿼드트리를 구축한다. 학습에 사용된 데이터는 COCO 2017 데이터 셋이며, 인공신경망은 VGG19 기반 네트워크를 사용한다. 컨볼루션 계층을 거칠 때 데이터의 손실을 막기 위해 잔차(Residual) 보완 방식과 유사하게 이전 계층의 출력 값을 더해주며 학습을 진행한다. 실험결과가 연기의 경우 제안된 방법은 이전 접근법에 비해 약 15~18배 정도의 속도향상을 얻었다.

사전훈련된 모델구조를 이용한 심층신경망 기반 유방암 조직병리학적 이미지 분류 (Breast Cancer Histopathological Image Classification Based on Deep Neural Network with Pre-Trained Model Architecture)

  • 비키 무뎅;이언진;최세운
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.399-401
    • /
    • 2022
  • 유방 악성 상태를 분류하기 위한 최종 진단은 침습적 생검을 이용한 현미경 분석을 통해 확인이 가능하나, 분석을 위해 일정 시간과 비용이 부과되며, 병리학적 지식을 보유한 전문가가 필요하다. 이러한 문제를 극복하기 위해, 딥 러닝을 활용한 진단 기법은 조직병리학적 이미지에서 유방암을 양성 및 악성으로 분류에 효율적인 방법으로 고려된다. 본 연구는 유방암 조직병리학적 이미지를 40배 확대한 BreaKHIS 데이터 세트를 사용하여 양성 및 악성으로 분류하였으며, 100% 미세 조정 체계와 Adagrad를 이용한 최적화로 사전 훈련된 컨볼루션 신경망 모델 아키텍처를 사용하였다. 사전 훈련된 아키텍처는 InceptionResNetV2 모델을 사용하여 마지막 계층을 고밀도 계층과 드롭아웃 계층으로 대체하여 수정된 InceptionResNetV2를 생성하도록 구성되었다. 훈련 손실 0.25%, 훈련 정확도 99.96%, 검증 손실 3.10%, 검증 정확도 99.41%, 테스트 손실 8.46%와 테스트 정확도 98.75%를 입증한 결과는 수정된 InceptionResNetV2 모델이 조직병리학적 이미지에서 유방 악성 유형을 예측하는 데 신뢰할 수 있음을 보여주었다. 향후 연구는 k-폴드 교차 검증, 최적화, 모델, 초 매개 변수 최적화 및 100×, 200× 및 400× 배율에 대한 분류에 초점을 맞추어 추가실험이 필요하다.

  • PDF

전이학습 기반 다중 컨볼류션 신경망 레이어의 활성화 특징과 주성분 분석을 이용한 이미지 분류 방법 (Transfer Learning using Multiple ConvNet Layers Activation Features with Principal Component Analysis for Image Classification)

  • 바트후 ?바자브;주마벡 알리하노브;팡양;고승현;조근식
    • 지능정보연구
    • /
    • 제24권1호
    • /
    • pp.205-225
    • /
    • 2018
  • Convolutional Neural Network (ConvNet)은 시각적 특징의 계층 구조를 분석하고 학습할 수 있는 대표적인 심층 신경망이다. 첫 번째 신경망 모델인 Neocognitron은 80 년대에 처음 소개되었다. 당시 신경망은 대규모 데이터 집합과 계산 능력이 부족하여 학계와 산업계에서 널리 사용되지 않았다. 그러나 2012년 Krizhevsky는 ImageNet ILSVRC (Large Scale Visual Recognition Challenge) 에서 심층 신경망을 사용하여 시각적 인식 문제를 획기적으로 해결하였고 그로 인해 신경망에 대한 사람들의 관심을 다시 불러 일으켰다. 이미지넷 첼린지에서 제공하는 다양한 이미지 데이터와 병렬 컴퓨팅 하드웨어 (GPU)의 발전이 Krizhevsky의 승리의 주요 요인이었다. 그러므로 최근의 딥 컨볼루션 신경망의 성공을 병렬계산을 위한 GPU의 출현과 더불어 ImageNet과 같은 대규모 이미지 데이터의 가용성으로 정의 할 수 있다. 그러나 이러한 요소는 많은 도메인에서 병목 현상이 될 수 있다. 대부분의 도메인에서 ConvNet을 교육하기 위해 대규모 데이터를 수집하려면 많은 노력이 필요하다. 대규모 데이터를 보유하고 있어도 처음부터 ConvNet을 교육하려면 많은 자원과 시간이 소요된다. 이와 같은 문제점은 전이 학습을 사용하면 해결할 수 있다. 전이 학습은 지식을 원본 도메인에서 새 도메인으로 전이하는 방법이다. 전이학습에는 주요한 두 가지 케이스가 있다. 첫 번째는 고정된 특징점 추출기로서의 ConvNet이고, 두번째는 새 데이터에서 ConvNet을 fine-tuning 하는 것이다. 첫 번째 경우, 사전 훈련 된 ConvNet (예: ImageNet)을 사용하여 ConvNet을 통해 이미지의 피드포워드 활성화를 계산하고 특정 레이어에서 활성화 특징점을 추출한다. 두 번째 경우에는 새 데이터에서 ConvNet 분류기를 교체하고 재교육을 한 후에 사전 훈련된 네트워크의 가중치를 백프로퍼게이션으로 fine-tuning 한다. 이 논문에서는 고정된 특징점 추출기를 여러 개의 ConvNet 레이어를 사용하는 것에 중점을 두었다. 그러나 여러 ConvNet 레이어에서 직접 추출된 차원적 복잡성을 가진 특징점을 적용하는 것은 여전히 어려운 문제이다. 우리는 여러 ConvNet 레이어에서 추출한 특징점이 이미지의 다른 특성을 처리한다는 것을 발견했다. 즉, 여러 ConvNet 레이어의 최적의 조합을 찾으면 더 나은 특징점을 얻을 수 있다. 위의 발견을 토대로 이 논문에서는 단일 ConvNet 계층의 특징점 대신에 전이 학습을 위해 여러 ConvNet 계층의 특징점을 사용하도록 제안한다. 본 논문에서 제안하는 방법은 크게 세단계로 이루어져 있다. 먼저 이미지 데이터셋의 이미지를 ConvNet의 입력으로 넣으면 해당 이미지가 사전 훈련된 AlexNet으로 피드포워드 되고 3개의 fully-connected 레이어의 활성화 틀징점이 추출된다. 둘째, 3개의 ConvNet 레이어의 활성화 특징점을 연결하여 여러 개의 ConvNet 레이어의 특징점을 얻는다. 레이어의 활성화 특징점을 연결을 하는 이유는 더 많은 이미지 정보를 얻기 위해서이다. 동일한 이미지를 사용한 3개의 fully-connected 레이어의 특징점이 연결되면 결과 이미지의 특징점의 차원은 4096 + 4096 + 1000이 된다. 그러나 여러 ConvNet 레이어에서 추출 된 특징점은 동일한 ConvNet에서 추출되므로 특징점이 중복되거나 노이즈를 갖는다. 따라서 세 번째 단계로 PCA (Principal Component Analysis)를 사용하여 교육 단계 전에 주요 특징점을 선택한다. 뚜렷한 특징이 얻어지면, 분류기는 이미지를 보다 정확하게 분류 할 수 있고, 전이 학습의 성능을 향상시킬 수 있다. 제안된 방법을 평가하기 위해 특징점 선택 및 차원축소를 위해 PCA를 사용하여 여러 ConvNet 레이어의 특징점과 단일 ConvNet 레이어의 특징점을 비교하고 3개의 표준 데이터 (Caltech-256, VOC07 및 SUN397)로 실험을 수행했다. 실험결과 제안된 방법은 Caltech-256 데이터의 FC7 레이어로 73.9 %의 정확도를 얻었을 때와 비교하여 75.6 %의 정확도를 보였고 VOC07 데이터의 FC8 레이어로 얻은 69.2 %의 정확도와 비교하여 73.1 %의 정확도를 보였으며 SUN397 데이터의 FC7 레이어로 48.7%의 정확도를 얻었을 때와 비교하여 52.2%의 정확도를 보였다. 본 논문에 제안된 방법은 Caltech-256, VOC07 및 SUN397 데이터에서 각각 기존에 제안된 방법과 비교하여 2.8 %, 2.1 % 및 3.1 %의 성능 향상을 보였다.